高数 08.05 一阶微分方程的解法练习

§

三个标准类型:
可分离变量方程,
齐次方程,
线性方程,
关键:判别方程类型,掌握求解步骤
1.
(1)y+1y2ey3+x=0;(2)xy=x2y2+y;(3)y=12xy2;(4)y=6x3+3xy23x2y+2y3
:(1)y+1y2ey3+x=0ey3+x=ey3ex,:dydx=1y2ey3exy2ey3dy=exdxy2ey3dy=exdx,13ey3d(y3)=dex:13ey3=ex+C
(2)xy=x2y2+yx,x>0,y=1(yx)2+yx,u=yx,u+xu=yu+xu=1u2+uxu=1u2du1u2=dxx:du1u2=dxxarcsinu=ln|x|+C arcsinyx=ln|x|+C x<0,y=1(yx)2+yxarcsinyx=ln|x|+C (x=0,y=x)
(3)y=12xy2dxdy=2xy2dxdy2x=y2P(y)=2,Q(y)=y2,x=eP(y)dy[C+Q(y)eP(y)dydy]=e[(2)]dy[C+(y2)e(2)dydy]=e2y[C+(y2)e2ydy]=e2y[C12(y2)de2y]=e2y[C+12y2e2y+12e2yd(y2)]=e2y[C+12y2e2y+122ye2ydy]=e2y[C+12y2e2y142yde2y]=e2y[C+12y2e2y+12ye2y+14de2y]=e2y[C+12y2e2y+12ye2y+14e2y]=Ce2y+12y2+12y+14

(4)y=6x3+3xy23x2y+2y3y=6+3(yx)23yx+2(yx)3u=yx,ux+u=y=6+3u23u+2u3ux=6+3u2+3u+2u33u+2u3du6+3u2+3u+2u33u+2u3=dxxln|6+3u2+3u+2u33u+2u3|=ln|x|+ln|C|6+3u2+3u+2u33u+2u3x=C6+3(yx)2+3u(yx)+2(yx)33(yx)+2(yx)3x=C6x4+3x2y2+3x3y+2xy33x2y+2y3=C(C)

3.F(x)=f(x)g(x),f(x),g(x)(,+):f(x)=g(x),g(x)=f(x),f(0)=0,f(x)+g(x)=2ex.(1)F(x);(2)F(x).
:F(x)=f(x)g(x)+f(x)g(x)=(f(x))2+(g(x))2=[f(x)+g(x)]22f(x)g(x)=(2ex)22F(x)F(x)线:F(x)+2F(x)=4e2xP(x)=2,Q(x)=4e2xy=eP(x)dx[C+Q(x)eP(x)dxdx]=e2dx[C+4e2xe2dxdx]=e2x[C+e4x]=e2x+Ce2xF(0)=f(0)g(0)=0,0=e0+Ce0,C=1F(x)=e2xe2x

4.y+y=f(x),
f(x)={2,0x10,x>1
y|x=0=0.
:x[0,1],P(x)=1,Q(x)=2y=eP(x)dx[C+Q(x)eP(x)dxdx]=e1dx[C+2e1dxdx]=exC+20=e0C+2,C=2y=2(1ex)(0x1)y|x=1=2(11e)x(1,+)dyy=dx,y=C2ex(x1)2(11e)=C2eC2=2(e1)y=2(e1)ex(x1)
:
y={2(1ex),0x12(e1)ex,x1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值