线性代数 06.02 总复习 内容总结04-05

线 

 

n⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 线{ 线⎧ ⎩ ⎨ ⎪ ⎪ {  线⎧ ⎩ ⎨ ⎪ ⎪ {  {   

{  

线{Ax=bAx=0 }  ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ {R(A)R(B)R(A)=R(B) }{R(A)=n0R(A)<n }  

 

1.线 

(1)线. 
(2)线. 
(3)nn线n. 
(4)线,线. 
(5)r线,线. 

2.线 

(1)线. 
(2)线. 
(3)nn线. 
(4)α 1 ,α 2 ,,α n 线m1线. 
(5)α 1 ,α 2 ,,α r 线,α 1 ,α 2 ,,α r ,α r+1 ,,α m 线. 

3.线线 

(1)α 1 ,α 2 ,,α m 线A=(α 1 ,α 2 ,,α m  )m,线R(A)=m. 
(2)α 1 ,α 2 ,,α m 线,β,α 1 ,α 2 ,,α m 线,βα 1 ,α 2 ,,α m 线,. 
(3)βα 1 ,α 2 ,,α m 线A=(α 1 ,α 2 ,,α m  )B=(α 1 ,α 2 ,,α m ,β ). 

4. 

(1),. 
(2)BA线,BA. 
(3). 

5. 

(1)n线A m×n x=0S,R(A m×n )=r,Snr. 

 

1.线 

(1):λ 1 α 1 +λ 2 α 2 ++λ m α m =0 
(2):;;;. 

2. 

(1),,;.使.(),()(). 

3. 

(1)线Ax=0:x=k 1 α 1 +k 2 α 2 ++k nr α nr (k 1 ,k 2 ,,k nr ) 
(2)线Ax=b:x=k 1 α 1 +k 2 α 2 ++k nr α nr +η  (k 1 ,k 2 ,,k nr )α 1 ,α 2 ,,α nr Ax=0;η  Ax=b. 

 

 

⎧ ⎩ ⎨ ⎪ ⎪ 6.16.26.3  

6.1 向量的内积
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ :[x,y]=x i y i :⎧ ⎩ ⎨ ⎪ ⎪ 1.[x,y]=[y,x]2.λ[x,y]=[λx,y]3.[x+y,z]=[x,z]+[y,z] :x=[x,x] − − − −   :θ=arccos[x,y]xy :[x,y]=0  

6.2 特征值与特征向量
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ :Ax=λx,x0:⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ :{1.;2.|AλE|. :{1.;(AλE)x=0.  :⎧ ⎩ ⎨ ⎪ ⎪ 线kk线|A|=λ 1 λ 2 λ n ,a ii =λ i  :⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ :P 1 AP=B⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ {1.An线2.R(Aλ k E)=nk,λ k Ak. {1.An2.A.  {1.A n =PΛ n P 1 2.f=x T Axf=y T Λy.  :⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ,kk线   

6.3 二次型
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ :f=x T Ax:⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ :f=y T Λy.⎧ ⎩ ⎨ ⎪ ⎪ 1.2.3.  :⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ :⎧ ⎩ ⎨ ⎪ ⎪ R(A)=r,p;q :x0,x T Ax>0:⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ;n;;AE,A=U T U,U. :|A|>0   

 

1. 

(1)|AλE|=0,Aλ i (n),线(Aλ i E)x=0,λ i . 
(2)Ax=λx() 

2.A 

A,A,.nA,:(1)|AλE|=0,Aλ(n),An,A.(2)Akλ k ,R(AλE),nk,A.R(Aλ k E)nk,A. 

3.() 

(1)Aλ 1 ,λ 2 ,,λ n ;(2)λ i (Aλ i E)x=0,λ i p i ;(3)n线pp=(p 1 ,p 2 ,,p n )p 1 Ap=Λ. 

4.A n  

A,A,P 1 AP=ΛA=PΛP 1 ,A n =PΛ n P 1 .,ΛA,P. 

5. 

(1) 写出二次型的矩阵A;
(2) 求出A的特征值,特征向量;
(3) 对于A的各个不相同的特征值所对应的特征向量已经正交,只需单位化;对于A的k重特征值所对应的特征向量是线性无关的,需用施密特正交化法将这k个线性无关的特征向量化成两两正交的单位向量;
(4)用所求得的n个两两正交的单位向量构造正交矩阵.
P=(P 1 ,P 2 ,,P n ) 
(5) x=Py,f=λ 1 y 2 1 +λ 2 y 2 2 ++λ n y 2 n . 

6. 

(1),x0,x T Ax>0; 
(2); 
(3)n; 
(4)p=n; 
(5)C,使A=C T C; 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值