第四章向量组的线性相关性
一、主要知识网络图
n维向量⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 运算线性表示{概念判定 线性相关⎧ ⎩ ⎨ ⎪ ⎪ 概念判定{充要条件充分条件 线性无关⎧ ⎩ ⎨ ⎪ ⎪ 概念判定{充要条件充分条件 极大无关组{概念求法
向量空间{概念向量空间的基
线性方程组{Ax=bAx=0 }⟹ 初等行变换 阶梯形⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 有解判定{R(A)≠R(B)无解R(A)=R(B)有解 }解的结构总有解{R(A)=n仅有0解R(A)<n有非零解 }基础解系
二、主要定理
1.线性无关
(1)一个向量线性无关的充分必要条件它不是零向量.
(2)两个向量线性无关的充分必要条件是它们对应的分量不成比例.
(3)n个n维向量线性无关的充分必要条件是它们所构成的n阶行列式不为零.
(4)若整组向量线性无关,则它的任何部分组都线性无关.
(5)若r维的向量线性无关,则在每个向量的后边都添加一个分量而得到的向量组仍然线性无关.
2.线性相关
(1)一个向量线性相关的充分必要条件是它是零向量.
(2)两个向量线性相关的充分必要条件是它们对应的分量成比例.
(3)n个n维向量线性相关的充分必要条件是它们构成的行列式等于零.
(4)向量组α 1 ,α 2 ,⋯,α n 线性相关的充分必要条件是该向量组至少有一个向量能由其余的m−1个向量线性表示.
(5)若向量组α 1 ,α 2 ,⋯,α r 线性相关,则向量组α 1 ,α 2 ,⋯,α r ,α r+1 ,⋯,α m 仍线性相关.
3.线性相关性与线性表示
(1)向量组α 1 ,α 2 ,⋯,α m 线性相关的充分必要条件是它所构成的矩阵A=(α 1 ,α 2 ,⋯,α m )的秩小于向量的个数m,向量组线性无关的充分必要条件是R(A)=m.
(2)若向量组α 1 ,α 2 ,⋯,α m 线性无关,而向量组β,α 1 ,α 2 ,⋯,α m 线性相关,则β能由α 1 ,α 2 ,⋯,α m 线性表示,且表示法是唯一的.
(3)向量β能由向量组α 1 ,α 2 ,⋯,α m 线性表示的充分必要条件是矩阵A=(α 1 ,α 2 ,⋯,α m )的秩等于矩阵B=(α 1 ,α 2 ,⋯,α m ,β )的秩.
4.向量组的秩
(1)矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩.
(2)若向量组B能由向量组A线性表示,则向量组B的秩不大于向量组A的秩.
(3)等价的向量组的秩相同.
5.解空间
(1)n元齐次线性方程组A m×n x=0的全体解所构成的集合S是一个向量空间,当系数矩阵的秩R(A m×n )=r时,解空间S的维数为n−r.
三、主要公式
1.向量组线性相关性证明
(1)公式:λ 1 α 1 +λ 2 α 2 +⋯+λ m α m =0
(2)方法:①定义法;②反证法;③判定法;④计算法.
2.求向量组的秩及极大无关组
(1)若求向量组的秩和向量组的极大无关组,将其向量组写成矩阵的形式,行向量组作初等列变换;列向量组做初等行变换.使之成为阶梯形矩阵.非零的列(行)的数即是向量组的秩,而非零的列(行)的非零首元所在的行(列)向量组是该向量组的一个极大无关组.
3.方程组的通解
(1)齐次线性方程组Ax=0的通解:x=k 1 α 1 +k 2 α 2 +⋯+k n−r α n−r (k 1 ,k 2 ,⋯,k n−r 为任意常数)
(2)非齐次线性方程组Ax=b的通解:x=k 1 α 1 +k 2 α 2 +⋯+k n−r α n−r +η ∗ (k 1 ,k 2 ,⋯,k n−r 为任意常数)其中α 1 ,α 2 ,⋯,α n−r 为Ax=0的基础解系;η ∗ 是Ax=b的一个特解.
第五章相似矩阵及二次型
一、主要知识网络图
⎧ ⎩ ⎨ ⎪ ⎪ 6.1向量的内积6.2特征值与特征向量6.3二次型
6.1 向量的内积
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 定义:[x,y]=∑x i y i 性质:⎧ ⎩ ⎨ ⎪ ⎪ 1.[x,y]=[y,x]2.λ[x,y]=[λx,y]3.[x+y,z]=[x,z]+[y,z] 范数:∥x∥=[x,x] − − − − √ 夹角:θ=arccos[x,y]∥x∥∥y∥ 正交:[x,y]=0
6.2 特征值与特征向量
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 定义:Ax=λx,x≠0求法:⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 特征值:{1.定义法;2.特征多项式法|A−λE|. 特征向量:{1.定义法;(A−λE)x=0的基础解系法. 性质:⎧ ⎩ ⎨ ⎪ ⎪ 不同特征值的特征向量线性无关k重特征值至多有k个线性无关的特征向量|A|=λ 1 λ 2 ⋯λ n ,∑a ii =∑λ i 相似:⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 定义:P −1 AP=B可对角化⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ {1.A有n个线性无关的特征向量2.R(A−λ k E)=n−k,λ k 是A的k重特征值. {1.A有n个不同的特征值2.A是实对称矩阵. 应用{1.A n =PΛ n P −1 2.f=x T Ax⟹f=y T Λy. 实对称矩阵隐含的信息:⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 必可以对角化,且可用正交变换不同特征值所对应的特征向量正交特征值全为实数k重特征值必有k个线性无关的特征向量与对角矩阵合同
6.3 二次型
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 矩阵表示:f=x T Ax标准型:⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 定义:f=y T Λy化标准型.⎧ ⎩ ⎨ ⎪ ⎪ 1.正交化方法2.配方法3.合同变换法 正定二次型:⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 惯性定律:⎧ ⎩ ⎨ ⎪ ⎪ 惯性指数R(A)=r,正惯性指数p;负惯性指数q 定义:∀x≠0,x T Ax>0充要条件:⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 特征值全大于零;正惯性指数为n;顺序主子式全大于零;A合同E,或A=U T U,其中U可逆. 必要条件:|A|>0
二、重要方法
1.求特征值和特征向量
(1)由特征方程|A−λE|=0,求出A的全部特征值λ i (共有n个),再解齐次线性方程组(A−λ i E)x=0,其基础解系就是λ i 所对应的特征向量.
(2)用定义法Ax=λx(适用于抽象的矩阵)
2.判断A能否对角化
若A是实对称矩阵,则A必能对角化,这是充分条件.对于一般的n阶方阵A,判断步骤如下:(1)由特征方程|A−λE|=0,求出A的特征值λ(共n个),若A的n个特征值各不相同,则A必能对角化.(2)对于A的k重特征值λ k ,求秩R(A−λE),若其秩等于n−k,则A可对角化.若秩R(A−λ k E)≠n−k,则A不能对角化.
3.求相似标准形的方法(可对角化的矩阵)
(1)求A的全部特征值λ 1 ,λ 2 ,⋯,λ n ;(2)对每个特征值λ i 求(A−λ i E)x=0的基础解系,得出特征值λ i 所对应的特征向量p i ;(3)将求得的n个线性无关的特征向量构造可逆矩阵p令p=(p 1 ,p 2 ,⋯,p n )则p −1 Ap=Λ.
4.用对角化求A n
若A能对角化,则求出A的特征值与特征向量,由P −1 AP=Λ得A=PΛP −1 ,从而A n =PΛ n P −1 .其中,对角矩阵Λ是由A的特征值所构成,可逆矩阵P由相应的特征向量所构成.
5.用正交变换化二次型为标准形
(1) 写出二次型的矩阵A;
(2) 求出A的特征值,特征向量;
(3) 对于A的各个不相同的特征值所对应的特征向量已经正交,只需单位化;对于A的k重特征值所对应的特征向量是线性无关的,需用施密特正交化法将这k个线性无关的特征向量化成两两正交的单位向量;
(4)用所求得的n个两两正交的单位向量构造正交矩阵.
P=(P 1 ,P 2 ,⋯,P n )
(5)
令x=Py,则得标准形f=λ 1 y 2 1 +λ 2 y 2 2 +⋯+λ n y 2 n .
6.正定的判别法
(1)用定义,∀x≠0,总有x T Ax>0;
(2)用顺次主子式全大于零;
(3)用n个特征值全大于零;
(4)用正惯性指数p=n;
(5)存在可逆矩阵C,使A=C T C;