概率统计D 07.05 单侧置信限

本文介绍了如何基于正态分布样本计算参数θ的单侧置信区间,通过具体实例展示了如何确定置信下限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§7.5 

α(0<α<1),(X 1 ,X 2 ,,X n )θ 1 =θ 1 (X 1 ,X 2 ,,X n )P{θ>θ 1 }=1α,(θ 1 ,+)θ1α,θ 1 1α. 
θ 2 =θ 2 (X 1 ,X 2 ,,X n )P{θ<θ 2 }=1α,(,θ 2 )θ1α,θ 2 1α. 

1.5寿,寿(:h): 
1050,1100,1120,1250,1280 
寿,0.95(θ 1 ,+). 
:寿XN(μ,σ 2 ),t=X ¯ ¯ ¯  μS/n    t(n1) 
1α=0.95t α (n1),使 
P{X ¯ ¯ ¯  μS/n    <t α (n1)}=1α, 
P{μ>X ¯ ¯ ¯  Sn    t α (n1)}=1α, 
μ1α 
(X ¯ ¯ ¯  Sn    t α (n1),+) 
μ1αX ¯ ¯ ¯  Sn    t α (n1) 

,n=5,1α=0.95,α=0.05,x ¯ =1160,s=99.75,t α (n1)=t 0.05 (4)=2.1318,μ0.95 
(x ¯ sn    t α (n1),+) 
=(116099.784    ×2.1318,+) 
=(1065,+) 
μ0.951065 

根据二项分布的公式,样本中出现r个错误的概率为: P(r) = (n choose r) * p^r * (1-p)^(n-r) 其中,n为样本容量,p为真实错误率,(n choose r)表示从n个样本中选择r个样本的组合数。我们需要找到一个区间,使得这个区间包含真实错误率的90%的概率。设这个区间为[p1, p2],则有: P(p1 <= p <= p2) = 0.9 为了求解这个区间,我们需要使用正态分布的近似。根据中心极限定理,当n足够大时,二项分布可以用正态分布来近似,即: X = (r - np) / sqrt(np(1-p)) 服从均值为0,方差为1的标准正态分布。其中,np是二项分布的均值,np(1-p)是方差。因此,有: p̂ = r/n X = (p̂ - p) / sqrt(p(1-p)/n) 我们可以使用标准正态分布的分位数来求出区间[p1, p2]。对于双侧置信区间,我们有: P(-z1.645 <= X <= z1.645) = 0.9 其中,z1.645是标准正态分布的第97.5个百分位数,可以使用查表或计算机软件来获得。解出p的范围即为: p1 = p̂ - z1.645 * sqrt(p̂(1-p̂)/n) p2 = p̂ + z1.645 * sqrt(p̂(1-p̂)/n) 对于单侧置信区间,我们只需要找到一个边界p1或p2即可。对于左侧置信区间,我们有: P(X <= z1.28) = 0.9 其中,z1.28是标准正态分布的第90个百分位数。解出p的下限即为: p1 = p̂ - z1.28 * sqrt(p̂(1-p̂)/n) 对于右侧置信区间,我们有: P(X >= z1.28) = 0.9 解出p的上限即为: p2 = p̂ + z1.28 * sqrt(p̂(1-p̂)/n) 因此,这个样本中真实错误率的90%置信区间为[0.091, 0.231],双侧置信区间为[0.091, 0.231],左侧置信区间为[0, 0.178],右侧置信区间为[0.136, 1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值