数学物理方法 11 变分法

 

§11.1 

11.1.1 

1696年,Basel大学Bernoulli提出,最速落径:
v=dsdt =2gy − − −    
T= t 2 (B) t 1 (A) dt= B A dsv ,ds=dx 2 +dy 2  − − − − − − − −   =1+(y  ) 2  − − − − − − −   dx 
T= B A 1+(y  ) 2  − − − − − − −   dx2gy − − −     
T=T[y(x)]= B A 1+(y  ) 2  − − − − − − −   dx2gy − − −    , 

1. 
J=J[y(x)],JB:();y(x)C:. 
:(1) 
(2) 
(3):y(x) 

2.:J[y(x)]= b a F(x,y,y  )dx(1) 
F(x,y,y  ) 

3.:T[y(x)] 

11.1.2 

类似于上述的求极值问题,如光学中费马原理,力学中最小作用力问题。在物理学中很多,我们将会看到求泛函极值可归结为两种方法.

1. 
(1):线 
(2): 
 

2. 
(1)::y(x)  y(x)+tη(x),t,δ(y)=tη(x)(2)tη(x)y(x).:δydy,dy,δy,. 
y  (x)=lim Δx0 ΔyΔx lim Δx0 Δ(y+tη)Δx =y  (x)+tη  (x) 
(2): 
δ(y  )=tη  (x)=ddx [tη(x)]=ddx δ(y)y  (x) 
:δ(y  )ddx δ(y) 

(3) 
(1)FC 2 ,yC 2 ,yy+tη 
ΔJ=J[y(x)+tη]J[y] 
= b a [F(x,y+tη,y  +tη  )F(x,y,y  )]dx 
= b a [Fy tη+Fy   tη  +t]dx 
δJ= b a (Fy δy+Fy   δy  )dx(4)J[y(x)] 

11.1.3 

J[y(x)]y(x),tη(x),J[y(x)+tη(x)]=ϕ(t)(y(x)),,J 
ϕ(t)ϕdt | t=0 =0 
J[y(x)+tη(x)]t | t=0 =0,, b a F(x,y+tη,y  +tη  ]t | t=0 dx=0 
 b a [F(y+tη) η+F(y  +tη  ) η  ]| t=0 dx=0, 
: b a [Fy η+Fy   η  ]dx=0 b a [Fy δy+Fy   δy  ]dx=0(5) 

1. 
(4):δJ=0 
 b a Fy   δy  dx= b a Fy   ddx (δy)dx 
=Fy   δy| b a  b a ddx (Fy   )δydx= b a ddx (Fy   )δydx 
(5): b a [Fy ddx (Fy   )]δydx=0 
Fy ddx (Fy   )=0Euler 

2.y(x)Euler 
(1)J[y(x)]= b a F(x,y,y  )dx 
Fy ddx (Fy   )=0y  Fy   F=C 

(2)J[y 1 (x),y 2 (x),,y n (x)]= b a F(x;y 1 ,y 2 ,,y n ;y  1 ,y  2 ,,y  n )dx 
Fy i  ddx (Fy  i  )=0,(i=0,1,2,,n) 

(3)J[y  (x),y  (x)y (n) (x)]= b a F(x;y;y  ,y  y (n) )dx 
Fy ddx (Fy   )+d 2 dx 2  (Fy   )d 3 dx 3  (Fy   )=0 

(4)J[u(x,y,z)]= b a F(x,y,z;u;u x ,u y ,u z )dxdydz 
Fu x (Fu x  )y (Fu y  )z (Fu z  )=0 
Euler 

3.Fx 
Fy ddx (Fy   )=0y  Fy   F=C 
ddx [y  Fy   F]=y  Fy   +y  ddx (Fy   )Fx Fy y  Fy   y   
=y  [Fy ddx (Fy   )]Fx  
Fx,Fx =0ddx [y  Fy   F]=0, 
y  Fy   F=C(B) 

1. 
T[y(x)]= x B  x A  1+(y  ) 2  − − − − − − −   dx2gy − − −     
δ x B  x A  1+(y  ) 2  − − − − − − −   dx2gy − − −    =0 
F=1+(y  ) 2  − − − − − − −   dx2gy − − −    =12g − −    1+(y  ) 2  − − − − − − −   y    x 
Eulerf 
y  y   1+(y  ) 2  − − − − − − −   y    1+(y  ) 2  − − − − − − −   y    =C 
(y  ) 2 [1+(y  ) 2 ]y − − − − − − − − −    1+(y  ) 2  − − − − − − −   y    =C 
(y  ) 4 [1+(y  ) 2 ]y +1+(y  ) 2 y 2y 2 y =C 2  
1[1+(y  ) 2 ]y =C 2 ,1C 2  =C 1  
y  =C 1 y − − − − −   y    ,xC 2 =y   C 1 y − − − − −    dy 
y=C 1 sin 2 θ2 ,⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ x=C 1 2 (θsinθ)+C 2 y=C 1 2 (1cosθ)  
C 1 2 . 
x.(x b ,y b )线.C 1 C 2 线. 

11.1.4 

⎧ ⎩ ⎨ J[y(x)]= b a F(x,y,y  )dx b a G(x,y,y  )dx=l ,y(a)=y 0 ,y(b)=y 1  
(Lagrange): 
:δ b a [F(x,y,y  )+λG(x,y,y  )]dx=0 
Fy +λGy ddx [(Fy   )+λddx (Gy   )]=0 
C 1 ,C 2 λ 

2.⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ J[y(x)]= 1 0 y 2 dx 1 0 y 2 dx=1y(0)=0,y(1)=1  
δ 1 0 (y 2 +λy 2 )dx=0 
x,Euler,Euler:2λyddx (2y  )=0 
:y  λy=0 
y=C 1 e λ   x +C 2 e λ   x  
{y(0)=0y(1)=1 :y n =C n sinnπx(n=1,2,) 
 1 0 y 2 dx=1:C n =±2   ,y n =±2   sinnπx 
J[y(x)]= 1 0 [ddx ±2   sinnπx] 2 dx=n 2 π 2  
J[y 1 (x)]=π 2  

11.1.5 

1.J[f(x)], 
y(x)=f(φ 1 (x),φ 2 (x)φ n (x);C 1 ,C 2 C n ) 
J[f(x)]=φ(C 1 ,C 2 ,,C n ) 
φC i  =0,J[f(x)],i=1,2,,n 

2. 
(1)ff(x)=lim n f(φ 1 ,φ 2 ,,φ n ;C 1 ,C 2 ,,C n ) 
(2)φ,f 
:线, 

3.:J[f(x)]= 1 0 y 2 dx()(1) 
{ 1 0 y 2 dx=1y(0)=0,y(1)=0 (2) 
:φ n (x)=C n x n  
y(x)=x(x1)(C 0 +C 1 x)=C 1 x 3 +(C 0 C 1 )x 2 C 0 x(3) 
(1):ϕ=J[y(x)]= 1 0 [3C 1 x 2 +2(C 0 C 1 )xC 0 ] 2 dx 
=13 (C 2 0 +C 0 C 1 +dfrac25C 2 1 )(4), 
ϕ=ϕ(C 0 ,C 1 ) 
(2): 1 0 y 2 dx=130 (C 2 0 +C 0 C 1 +27 C 2 1 )=1(5) 
ψ=130 (C 2 0 +C 0 C 1 +27 C 2 1 )1=0 
:y(x)=f(x 1 ,x 2 ,,x n )m: 
g k (x 1 ,x 2 ,,x n )=0,(k=1,2,,m) 
F=y+ k=1 m λ k g k  
使⎧ ⎩ ⎨ Fx =0g k (x i )=0 i=1,2,,n 
⎧ ⎩ ⎨ ⎪ ⎪ FC i  =ϕC i  +λψC i  =0φ=0 λy 
,(5):C 2 0 +C 0 C 1 =3027 C 2 1 (6) 
(4):ϕ=J[y(x)]=13 (3027 C 2 1 +25 C 2 1 ) 
=23 (15+235 C 2 1 ),C 1 =0,J[f(x)]=10 
C 1 =0(6)C 0 =±30 − −   ,(4) 
y(x)=±30 − −   x(x1)=±30 − −   x(x1) 
=±30 − −   [(x12 ) 2 14 ] 
(x12 ) 2 =1±30 − −    y+14 =±21230 − −    (y±30 − −   4 ) 
h=12 ,k=(±30 − −   4 ),p=1230 − −     
(xh) 2 =±2p(yk) 
:(h,k);:(h,k±p2 );线:y=k±p2  

§11.2 

11.2.1 

1. 
Euler 
 
 

2. 
(1) 
(2)(),. 

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值