数学物理方法 14 勒让德多项式

 

: 
(1+3cos 2 θ) 
{Δu=,r<1u| r=1 =(1+3cos 2 θ)  

Δu=0 u=R(r)Θ(θ)Φ(φ) u=? 
1sinθ ddθ (sinθdΘdθ )+[l(l+1)m 2 sin 2 θ ]Θ=0 m=0 Θ(θ)=? 
x=cosθ,y(x)=Θ(θ) 
(1x 2 )y  2xy  +[l(l+1)m 2 1x 2  ]y=0y(x)=? 
m=0(1x 2 )y  2xy  +l(l+1)y=0y(x)=? 
 

§14.1 

:线1: 
:W  (z)+p(z)W  (z)+q(z)W(z)=0(1) 
p(z)q(z)z 0 ,z 0 . 
z=z 0 |zz 0 |<R, 
W(z 0 )=C 0 ,W  (z 0 )=C 1 W(z)= k=0  C k (zz 0 ) k (2) 
C 0 C 1 ;C 0 C 1  
(2)(1)[ 
(zz 0 )]. 

§14.1.1 

(1x 2 )y  2xy  +l(l+1)y=0(1) 
p(x)=2x1x 2  ,q(x)=l(l+1)1x 2  ,x=0 
y= k=0  c k x k (2) 
 k=2  k(k1)c k x k2  k=2  k(k1)c k x k 2 k=1  kc k x k +l(l+1) k=0  c k x k =0 
x 0 :21c 2 +l(l+1)c 0 =0c 2 =l(l+1)21 c 0  
x 1 :32c 3 2c 1 +l(l+1)c 1 =0c 3 =l(l+1)232 c 1  
x k :c k+2 =[l(l+1)k(k+1)(k+2)(k+1) c k (3) 
c 4 =l 2 +l2343 c 2 =(1) 2 (l2)l(l+1)(l+3)4! c 0  
c 5 =(1) 2 (l3)(l1)(l+2)(l+4)5! c 1  
c 2n =(1) n (l2n+2)(l2n+4)l(l+1)(l+3)(l+2n1)(2n)! c 0 (4) 
c 2n+1 =(1) n (l2n+1)(l2n+3)(l1)(l+2)(l+4)(l+2n)(2n+1)! c 1 (5) 
y= k=0  c k x k =c 0 + n=1  c 2n x 2n +c 1 x+ n=1  c 2n+1 x 2n+1  
=y 0 (x)+y 1 (x),: 
y 0 (x)=c 0 + n=1  c 2n x 2n (6) 
y 1 (x)=c 1 x+ n=1  c 2n+1 x 2n+1 (7) 

c 2n =(1) n (l2n+2)(l2n+4)l(l+1)(l+3)(l+2n1)(2n)! c 0 (4) 
c 2n+1 =(1) n (l2n+1)(l2n+3)(l1)(l+2)(l+4)(l+2n)(2n+1)! c 1 (5) 

14.1.2 

1. 
R=lim k |a k a k+1  |=lim k |c k c k+2  |= (3) lim k |(k+2)(k+1)l(l+1)k(k+1) |=1 
y(x)⎧ ⎩ ⎨ ⎪ ⎪ |x|<1|x|>1|x|=1??  

2. 
x=±1(6)(7): 
y 0 (±1)=c 0 + n=1  c 2n (±1) 2n =c 0  n=0  f n f n  
y 1 (±1)=c 1  n=1  g n  
f n f n+1  =(2n+2)(2n+1)2n(2n+1)l(l+1) =1+1n +l(l+1)4n 2  =1+1n +o(1n 2  ) 
g n g n+1  =1+1n +o(1n 2  )y 0 (x),y 1 (x)x=±1 

14.1.3 

{(1x 2 )y  2xy  +l(l+1)y=0,l(l+1)(8)y| x=±1   
c k+2 =[l(l+1)k(k+1)](k+2)(k+1) c k (3) 
l=0,1,2,,l=k, 
c k+2 =c l+2 =0c l =0 
c k+4 =0,c k+6 =0, 
y 0 y 1 l 

1.l=k=2n,n=0,1,2, 
c k+2 =c l+2 =c 2n+2 =0,c 2n+4 =c 2n+6 ==0 
y 0 (x)=c 0 +c 2 x 2 ++c 2n x 2n  
=c 0 +c 2 x 2 ++c l x l l 
y 1 (x)=c 1 x+c 3 x 3 ++c 2n+1 x 2n+1 +c 2n+3 x 2n+3 + 

2.l=k=2n+1,n=0,1,2, 
c k+2 =c l+2 =c 2n+3 =0,c 2n+5 =c 2n+7 ==0 
y 1 (x)=c 1 x+c 3 x 3 ++c 2n+1 x 2n+1  
=c 1 x+c 3 x 3 ++c l x l l 
y 0 (x)=c 0 +c 2 x 2 ++c 2n+2 x 2n+2 +c 2n+4 x 2n+4 + 
总之,本征值问题
{(1x 2 )y  2xy  +l(l+1)y=0,l(l+1)(8)y| x=±1   
:l(l+1),l=0,1,2, 
:{y 0 (x)=c 0 +c 2 x 2 ++c l x l ,l=2ny 1 (x)=c 1 x+c 3 x 3 ++c l x l ,l=2n+1  
c 2n =(1) n (l2n+2)(l2n+4)l(l+1)(l+3)(l+2n1)(2n)! c 0  
c 2n+1 =(1) n (l2n+1)(l2n+3)(l1)(l+2)(l+4)(l+2n)(2n+1)! c 1  

14.1.4 

c l =(2l)!2 l (l!) 2  ,ly 0 (x)y 1 (x)P l (x),lLegendre. 
(3):c k =(k+2)(k+1)k(k+1)l(l+1) c k+2 =(k+2)(k+1)(kl)(k+l+1) c k+2  
c l2 =l(l1)2(2l1) c l =(1)(2l2)!2 l (l1)!(l2)! , 
c l4 =(l2)(l3)4(2l3) c l2 =(1) 2 (2l4)!2 l 2(l2)!(l4)! , 
c l2n =(1) n (2l2n)!2 l n!(ln)!(l2n)! p l (x)= n c l2n x l2n  
P l (x)= n=0 l2  (1) n (2l2n)!2 l n!(ln)!(l2n)! x l2n (9) 
[l2 ]=⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ l2 ,l=2nl12 ,l=2n+1  
:{(1x 2 )y  2xy  +l(l+1)y=0,l(l+1)(8)y| x=±1   
{:l(l+1),l=0,1,:P l (x)  
P 0 (x)=(1) 0 0!2 0 0!0!0! x 00 =1(10) 
l=1,n:0112 =0,P 1 (x)=(1) 0 (20)!2 1 0!(10)!(10)! x 1 =x(11) 
l=2,n:022 =1, 
P 2 (x)=(1) 0 (40)!2 2 0!(20)!(20)! x 2 +(1) 1 (42)!2 2 1!(21)!(21)! x 0 =12 (3x 2 1)(12) 

P l (1)1 

14.1.5 

1. 
P l (x)=12 l l! d l dx l  (x 2 1) l (13) 

2. 
P l (x)=12πi  l   (ξ 2 1) l 2 l (ξx) l+1  dξ(14) 

14.1.6 

{(1x 2 )y  2xy  +l(l+1)y=0,l(l+1)(8)y| x=±1   
{:l(l+1),l=0,1,:P l (x)  
P l (x)= n=0 l2  (1) n (2l2n)!2 l n!(ln)!(l2n)! x l2n (9) 
P 0 (x)=1,P 1 (x)=x,P 2 (x)=12 (3x 2 1),P l (1)1 

§14.2 

14.2.1 

112xt+t 2  − − − − − − − − − −    = l=0  P l (x)t l ,|t|<1(1) 
:w(x,t)= n F n (x)t n ,w(x,t)F n (x). 
:4πω 0 ,r<1,u: 
Δu=0,r<1,u(r,θ)=R(r)Θ(θ) 
{r 2 R  +2rR  l(l+1)R=0(1x 2 )y  2xy  +l(l+1)y=0,[x=cosθ,y(x)=Θ(θ)]  
r 2 R  +2rR  l(l+1)R=0R l (r)=c l r l +d l r (l+1)  
(1x 2 )y  2xy  +l(l+1)y=0y(x)=P l (x) 
r<1:u(r,θ)=R(r)Θ(θ)= l=0  c l r l P l (x) 
:u=1d =112rcosθ+r 2  − − − − − − − − − − − − −     
112rx+r 2  − − − − − − − − − −    = l=0  c l r l P l (x) 
x=1:112r+r 2  − − − − − − − − −    = l=0  c l r l 11r = l=0  c l r l  
r<1,11r = l=0  r l  l=0  r l = l=0  c l r l c l 1,l=0,1, 
:112rx+r 2  − − − − − − − − − −    = l=0  P l (x)r l ,(r<1) 
:112xt+t 2  − − − − − − − − − −    = l=0  P l (x)t l ,|t|<1 

14.2.2 

112xt+t 2  − − − − − − − − − −    = l=0  P l (x)t l ,|t|<1(1) 
1.(l+1)P l+1 (x)(2l+1)xP l (x)+lP l1 (x)=0(2) 
2.(2l+1)P l (x)=P  l+1 (x)P  l1 (x)(3) 
ddt (1)xt(12xt+t 2 ) 32   = l=1  P l (x)lt l1  
×(12xt+t 2 ) 
(xt) l=0  P l (x)t l =(12xt+t 2 ) l=1  lP l (x)t l1  
x l=0  P l (x)t l  l=0  P l (x)t l+1 = l=1  lP l (x)t l1 2x l=1  lP l (x)t l + l=1  lP l (x)t l+1  
t l (2) 

ddx (1)t(12xt+t 2 ) 32   = l=0  P  l (x)t l  
t l=0  P l (x)t l =(12xt+t 2 ) l=0  P  l (x)t l  
t l+1 :P l (x)=P  l+1 (x)2xP  l (x)+P  l1 (x)(4) 
ddx (2)(l+1)P  l+1 (x)(2l+1)P l (x)(2l+1)xP  l (x)+lP  l1 (x)=0 
xP  l (x)=P l (x)l+12l+1 P  l+1 (x)l2l+1 P  l1 (x)(5) 
(5)(4)(3) 

(1). 
:P 0 (x)=1,P 1 (x)=x (2) P 2 (x) 
(2)P l (x). 
: b a P l (x)dx=12l+1  b a [P  l+1 (x)P  l1 (x)]dx 
=12l+1 [P l+1 (x)P l1 (x)] b a  

14.2.3 

 1 1 P l (x)P k (x)dx=22l+1 δ kl ,k,l=0,1,2,(6) 
δ kl ={0kl1k=l () 
ddx [(1x 2 )P  l (x)]+l(l+1)P l (x)=0(7) 
ddx [(1x 2 )P  k (x)]+k(k+1)P k (x)=0(8) 
 1 1 [(7)P k (x)(8)P l (x)]dx: 
[k(k+1)l(l+1)] 1 1 P k (x)P l (x)dx= 1 1 ddx [(1x 2 )P  l (x)]P k (x)dx1 1 ddx [(1x 2 )P  k (x)]P l (x)dx=0 

 1 1 P l (x)P k (x)dx=22l+1 δ kl ,k,l=0,1,2,(6) 
kl, 1 1 P l (x)P k (x)dx=0 
k=l,1(12xt+t 2  − − − − − − − − − −   ) 2  = l=0  P l (x)t l  k=0  P k (x)t k  
 1 1 112xt+t 2  dx= l=0   k=0   1 1 P l (x)P k (x)dxt l+k  
= l=0   1 1 P 2 l (x)dxt 2l  

 1 1 P l (x)P k (x)dx=22l+1 δ kl ,k,l=0,1,2,(6) 
= 1 1 d(12xt+t 2 )12xt+t 2  12t  
=12t ln(12xt+t 2 )| 1 1 =12t ln(1+t) 2 (1t) 2  =1t ln1+t1t  
= T  l=0  22l+1 t 2l  
k=l: 1 1 P 2 l (x)dx=22l+1  
= l=0   1 1 P 2 l (x)dxt 2l  
N l =22l+1  − − − − − −   P l (x),1N l   
P L (x)=1N l  P l (x),P K (x)=1N k  P k (x) 
\int_{-1}^{1} P_L(x)P_K(x) dx = \delta_{KL} -正交归一
P l (x). 
 1 1 P 199 (x)P 300 (x)dx=0 
 1 1 P 2 8 (x)dx=228+1 =217  
 1 1 P 8 (x)P 9 (x)dx=0 
 1 1 xP 8 (x)P 9 (x)dx=917 218+1  

14.2.4广 

f(x)= l=0  C l P l (x)(9) 
C l =2l+12  1 1 f(x)P l (x)dx(10) 
(1) 
(2),,Legendre. 
(1+3cos 2 θ) 
:{Δu=0,r<1(1)u| r=1 =(1+3cos 2 θ)(2) u(r,θ)=R(r)Θ(θ) 
(1){r 2 R  +2rR  l(l+1)R=0R l (r)=c l r l +d l r (l+1) (1x 2 )y  2xy  +l(l+1)y=0y(x)=P l (x)  
(1)u(r,θ)= l=0  C l r l P l (cosθ) l=0  C l P l (cosθ)=(1+3cos 2 θ) 
 l=0  C l P l (x)=(1+3x 2 )(3) 
C l =2l+12  1 1 (1+3x 2 )P l (x)dx 
1=P 0 (x),P 2 (x)=12 (3x 2 1)3x 2 =2P 2 +P 0  
C l =(2l+1)2 [ 1 1 P 0 P l (x)dx+2 1 1 P 2 P l (x)dx+ 1 1 P 0 P l (x)dx] 
=(2l+1)[ 1 1 P 2 P l (x)dx+ 1 1 P 0 P l (x)dx] 
C 0 =(20+1) 1 1 P 2 0 (x)dx=2,C 2 =(22+1) 1 1 P 2 2 (x)dx=2 
C l 0(l0,2)u(r,θ)=2r 0 P 0 (cosθ)+2r 2 P 2 (cosθ) 

:1=P 0 (x),3x 2 =2P 2 +P 0  
(3) l=0  C l P l (x)=1+3x 2 =P 0 (x)+2P 2 (x)+P 0 (x)=2P 0 +2P 2  
C 0 =2,C 2 =2,C l 0(l0,2) 
:u(r,θ)=2r 0 P 0 (cosθ)+2r 2 P 2 (cosθ) 
=2+2r 2 12 (3cos 2 θ1) 
=2+3r 2 cos 2 θr 2  

14.2.5 

1.:112xt+t 2  − − − − − − − − − −    = l=0  P l (x)t l ,|t|<1(1) 
2. 
1.(l+1)P l+1 (x)(2l+1)xP l (x)+lP l1 (x)=0(2) 
2.(2l+1)P l (x)=P  l+1 (x)P  l+1 (x)(3) 
3. 
 1 1 P l (x)P k (x)dx=22l+1 δ kl ,k,l=0,1,2,(6) 
4.广 
f(x)= l=0  C l P l (x)(9) 
C l =2l+12  1 1 f(x)P l (x)dx(10) 

§14.3 

 
: 
Δu=0 u=R(r)Θ(θ)Φ(φ)  
r 2 R  +2rR  l(l+1)R=0R(r)=c l r l +d l r (l+1)  
Φ  +m 2 Φ=0Φ m (φ)=A m cosmφ+B m sinmφ 
1sinθ ddθ (sinθdΘdθ )+[l(l+1)m 2 sin 2 θ ]Θ=0Θ(θ)=? 
x=cosθ,y(x)=Θ(θ) 
(1x 2 )y  2xy  +[l(l+1)m 2 1x 2  ]y=0y(x)=? 
:au 0 sin 2 θcos2φ,u 0  
{Δu(r,θ,φ)=0,r<a(1)u| r=a =u 0 sin 2 θcos2φ(2)  
u(r,θ,φ)=?,r<a 

14.3.1 

1. 
⎧ ⎩ ⎨ ⎪ ⎪ (1x 2 )y  2xy  +[l(l+1)m 2 1x 2  ]y=0(1)y| x=±1 ,x=0  
y(x)=(1x 2 ) m2  v(x)(2),(1): 
(1x 2 )v  (x)2(m+1)xv  (x)+[l(l+1)m(m+1)]v=0(3) 
(1x 2 )P  l (x)2xP  l (x)+l(l+1)P l (x)=0(4) 
d m dx m  (4):(1x 2 )[P (m) l (x)]  2(m+1)x[P (m) l (x)]  +[l(l+1)m(m+1)]P (m) l (x)=0(5) 
(3)(5):v(x)=P (m) l (x) 
P m l (x)=(1x 2 ) m2  P (m) l (x)Legendre 
l(l+1),l=0,1,2, 
:y(x)=P (m) l (x)=(1x 2 ) m2  d m dx m  P l (x),m=0,1,,l(6) 
P 0 l (x)=P l (x) 
P 1 1 (x)=(1x 2 ) 12  ddx P 1 (x)=(1x 2 ) 12  ,orP 1 1 (cosθ)=sinθ 
P 1 2 (x)=(1x 2 ) 12  ddx P 2 (x)=3(1x 2 ) 12  x,orP 1 2 (cosθ)=32 sin2θ 
P 2 2 (x)=(1x 2 )d 2 dx 2  P 2 (x)=3(1x 2 ),orP 2 2 (cosθ)=3sin 2 θ 
P 0 (x)=1,P 1 (x)=x,P 2 (x)=12 (3x 2 1),P l (1)1 

2.P m l (x) 
P m l (x)=(1x 2 ) m2  2 l l! d l+m dx l+m  (x 2 1) l (7) 
P m l (x)=(1x 2 ) m2  2 l l! d lm dx lm  (x 2 1) l  
P m l (x)=(1) m (lm)!(l+m)! P m l (x) 

3.P m l (x) 
P m l (x)=(1x 2 ) m2  2 l l! (l+m)!2πi  l   (ξ 2 1) l (ξx) l+m+1  dξ(8) 

14.3.2 

1.:(2m1)!!(12xt+t 2 ) m+12   = l=m  P m l (x)t lm  
2.: 
(l+1m)P m l+1 (x)(2l+1)xP m l (x)+(l+m)P m l1 (x)=0(9) 
(l+1)P l+1 (x)(2l+1)xP l (x)+lP l1 (x)=0(A) 
d m dx m  (A):(l+1)P (m) l+1 (x)(2l+1)xP (m) l (x)m(2l+1)P (m1) l (x)+lP (m) l1 (x)=0(10) 
(2l+1)P l (x)=P  l+1 (x)P  l1 (x) 
m(2l+1)P (m1) l (x)=mP (m) l+1 (x)+mP (m) l1 (x)(11) 
[(11)(10)](1x 2 ) m2  (9) 

3. 
 1 1 P m l (x)P m k (x)dx=(l+m)!(lm)! 22l+1 δ kl  

4.广 
f(x)= l=0   m=0 l C m l P m l (x), 
C m l =(lm)!(l+m)! 2l+12  1 1 f(x)P m l (x)dx 

5.:au 0 sin 2 θcos2φ,u 0 , 
:{Δu(r,θ,φ)=0,r<1(1)u| r=a =u 0 sin 2 θcos2φ(2)  
u= l=0   m=0 l (A m l cosmφ+B m l sinmφ)r l P m l (cosθ) 
 l=0   m=0 l (A m l a l cosmφ+B m l a l sinmφ)P m l (cosθ) 
=u 0 sin 2 θcos2φ=13 u 0 P 2 2 (cosθ)cos2φ 
A 2 2 a 2 =13 u 0 ,A m l a l =0(m,l2),B m l a l 0 
A 2 2 =u 0 3a 2  ,A m l =0(l,m2),B m l 0 
u(r,θ,φ)=u 0 r 2 a 2  sin 2 θcos2φ 

14.3.3 

1.: 
Δu=0 u=R(r)Θ(θ)Φ(φ)  
u l,m =(c l r l +d l r (l+1) )(A m cosmφ+B m sinmφ)P m l (cosθ) 
y m l (θ,φ)=P m l (cosθ){sinmφcosmφ },m=0,1,,l;l=0,1, 
y m l (θ,φ)=P |m| l (cosθ)e imφ ,m=0,±1,,±ll 
(y m l (θ,φ)2l+1) 
u= l=0   m=l l (c l r l +d l r (l+1) )y m l (θ,φ) 

2. 
(1):: 
y l,m (θ,φ)=2l+14π (l|m|)!(l+|m|)!  − − − − − − − − − − − − − −   P |m| l (cosθ)e imφ  
m=0,±1,±2,,±l;l=0,1, 

: 
 π 0  2π 0 y l,m (θ,φ)y k,n (θ,φ) ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  sinθdφdθ=δ kl δ nm  
y l,m (θ,φ)=(1) m y l,m (θ,φ) ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯   
y 0,0 =14π − −    ,y 1,±1 =38π  − − −   sinθe ±iφ ,y 2,±2 =1532π  − − − −   sin 2 θe ±i2φ  
Δu=0u= l=0   m=l l (c l r l +d r r (l+1) )y l,m (θ,φ) 

(2)广: 
f(θ,φ)= l=0   m=l l C l,m y l,m (θ,φ) 
C l,m = 2π 0  π 0 f(θ,φ)y l,m (θ,φ) ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  sinθdθdφ 

3 
u(r,θ,φ)= l=0   m=l l C l,m r l y l,m (θ,φ) 
u| r=a =u 0 sin 2 θcos2φ=u 0 2 sin 2 θ[e i2φ +e i2φ ] 
=u 0 2 32π15  − − − −   [1532π  − − − −   sin 2 θe i2φ +1532π  − − − −   sin 2 θe i2φ ] 
=8π15  − − −   u 0 [y 2,2 (θ,φ)+y 2,2 (θ,φ)] 
y 2,±2 =1532π  − − − −   sin 2 θe ±i2φ  
 l=0   m=l l C l,m a l y l,m (θ,φ)=8π15  − − −   u 0 [y 2,2 (θ,φ)+y 2,2 (θ,φ)] 
C 2,2 a 2 =C 2,2 a 2 =8π15  − − −   u 0 C 2,±2 =8π15  − − −   u 0 a 2  ,C l,m 0(l2,m±2) 
u(r,θ,φ)=8π15  − − −   u 0 r 2 a 2  [y 2,2 (θ,φ)+y 2,2 (θ,φ)] 

14.3.4 

1.P l (x): 
(1): 
112xt+t 2  − − − − − − − − − −    = l=0  P l (x)t l ,|t|<1(1) 
(2) 
A.(l+1)P l+1 (x)(2l+1)xP l (x)+lP l1 (x)=0(2) 
B.(2l+1)P l (x)=P  l+1 (x)P  l1 (x)(3) 
(3). 
 1 1 P l (x)P k (x)dx=22l+1 δ kl ,k,l=0,1,2(6) 
(4)广 
f(x)= l=0  C l P l (x)(9) 

2.P m l (x): 
(1)⎧ ⎩ ⎨ ⎪ ⎪ (1x 2 )y  2xy  +[l(l+1)m 2 1x 2  ]y=0y| x=±1 ,  

:l(l+1),l=0,1,2, 
:y(x)=P m l (x)=(1x 2 ) m2  d m dx m  P l (x),m=0,1,l(6) 

(2)(l+1m)P m l+1 (x)(2l+1)xP m l (x)+(l+m)P m l1 (x)=0(9) 
(3) 1 1 P m l (x)P m k (x)dx=(l+m)!(lm)! 22l+1 δ kl  
(4)f(x)= l=0  C m l P m l (x),C m l =(lm)!(l+m)! 2l+12  1 1 f(x)P m l (x)dx 

3.y l,m (θ,φ): 
y l,m (θ,φ)=2l+14π (l|m|)!(l+|m|)!  − − − − − − − − − − − − − −   P |m| l (cosθ)e imφ  
Δu=0u= l=0   m=l l (c l r l +d l r (l+1) )y l,m (θ,φ) 
 π 0  2π 0 y l,m (θ,φ)y l,n (θ,φ) ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  sinθdφdθ=δ kl δ nm  
f(θ,φ)= l=0   m=l l C l,m y l,m (θ,φ) 
C l,m = 2π 0  π 0 f(θ,φ)y l,m (θ,φ) ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  sinθdθdφ 

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值