抽象代数 04.06可解群和幂零群

http://www.icourses.cn 南开大学《抽象代数》

§4.6 可解群和幂零群 {\color{blue}{\text{\S 4.6 可解群和幂零群}}} §4.6 可解群和幂零群

考 虑 扩 张 N → G → G / N , 什 么 时 候 G / N 是 循 环 群 , 更 一 般 的 是 交 换 群 。 考虑扩张N \to G \to G/N,什么时候G/N是循环群,更一般的是交换群。 NGG/N,G/N
定 义 4.6.1. 设 g , h ∈ G , 称 [ g , h ] = g − 1 h − 1 g h 为 g , h 的 换 位 子 。 {\color{blue}定义4.6.1.}设g,h \in G, 称[g,h]=g^{-1}h^{-1}gh为g,h的{\color{blue}换位子}。 4.6.1.g,hG,[g,h]=g1h1ghg,h
若 H , K 都 是 G 的 子 群 , 我 们 称 若H,K都是G的子群,我们称 H,KG
[ H , K ] = ⟨ { [ h , k ] ∣ h ∈ H , k ∈ K } ⟩ \qquad [H, K] = \lang \lbrace [h,k] | h \in H, k \in K \rbrace \rang [H,K]={[h,k]hH,kK}
为 H , K 的 换 位 子 群 . 为H,K的{\color{blue}换位子群}. H,K.
注 记 4.6.2. 1 ) 换 位 子 群 的 定 义 中 的 “ 生 成 ” 是 否 可 以 去 掉 ? 或 者 [ g 1 , h 1 ] [ g 2 , h 2 ] 是 {\color{blue}注记4.6.2.}1)换位子群的定义中的“生成”是否可以去掉?或者[g_1,h_1][g_2,h_2]是 4.6.2.1)[g1,h1][g2,h2]
否 为 换 位 子 ? 否为换位子?
2 ) [ g , h ] − 1 = [ g , h ] . 2)[g,h]^{-1} = [g,h]. 2)[g,h]1=[g,h].
3 ) [ g , h ] = 1 ⇒ g h = h g . 因 此 换 位 子 可 以 用 来 衡 量 群 G 的 交 换 性 。 3)[g,h] = 1 \Rightarrow gh = hg.因此换位子可以用来衡量群G的交换性。 3)[g,h]=1gh=hg.G
4 ) 若 α ∈ A u t    G , 则 α [ g , h ] = [ α ( g ) , α ( h ) ] . 4)若\alpha \in \mathrm{Aut\;}G,则\alpha[g,h] = [\alpha(g),\alpha(h)]. 4)αAutG,α[g,h]=[α(g),α(h)].
5 ) N ⊲ G , G / N 是 A b e l 群 当 且 仅 当 N ⊂ G ( 1 ) . 5)N \lhd G, G/N是Abel群当且仅当N \sub G^{(1)}. 5)NG,G/NAbelNG(1).
猜 想 4.6.3. ( O r e ) . 每 个 非 交 换 有 限 单 群 中 的 元 素 都 是 换 位 子 。 {\color{blue}猜想4.6.3.}(Ore).每个非交换有限单群中的元素都是换位子。 4.6.3.(Ore).
O r e ( 1952 ) 证 明 了 A n 情 形 。 Ore(1952)证明了A_n情形。 Ore(1952)An
例 4.6.4. − I 2 ∈ S L ( 2 , R ) 不 是 换 位 子 。 {\color{blue}例4.6.4.}-I_2 \in SL(2, \R)不是换位子。 4.6.4.I2SL(2,R)
引 理 4.6.5. 设 H , K 是 G 的 子 群 。 则 {\color{blue}引理4.6.5.}设H,K是G的子群。则 4.6.5.H,KG
1 ) [ H , K ] = { 1 } 当 且 仅 当 H ⊂ C G ( K ) 当 且 仅 当 K ⊂ C G ( H ) . 1)[H,K] = \lbrace 1 \rbrace当且仅当H \sub C_G(K)当且仅当K \sub C_G(H). 1)[H,K]={1}HCG(K)KCG(H).
2 ) [ H , K ] ⊂ K 当 且 仅 当 H ⊂ N G ( K ) . 2)[H,K] \sub K当且仅当H \sub N_G(K). 2)[H,K]KHNG(K).
3 ) H ⊲ G , K ⊲ G , 则 [ H , K ] ⊲ G 且 [ H , K ] ⊂ H ∩ K . 特 别 地 [ H , H ] ⊲ G , [ G , G ] ⊲ G . 3)H \lhd G, K \lhd G, 则[H,K] \lhd G 且[H,K] \sub H \cap K.特别地[H,H] \lhd G, [G,G] \lhd G. 3)HG,KG,[H,K]G[H,K]HK.[H,H]G,[G,G]G.
4 ) H 1 &lt; H , K 1 &lt; K , 则 [ H 1 , K 1 ] ⊂ [ H , K ] . 4)H_1 &lt; H, K_1 &lt; K,则[H_1,K_1] \sub [H, K]. 4)H1<H,K1<K,[H1,K1][H,K].
例 4.6.6. G = S n , G ( 1 ) . {\color{blue}例4.6.6.}G = S_n, G^{(1)}. 4.6.6.G=Sn,G(1).
定 义 4.6.7. 导 出 列 : G ( 0 ) = G , G ( k + 1 ) = [ G ( k ) , G ( k ) ] , k ≥ 0. {\color{blue}定义4.6.7.}导出列:G^{(0)} = G, G^{(k+1)} = [G^{(k)},G^{(k)}], k \geq 0. 4.6.7.:G(0)=G,G(k+1)=[G(k),G(k)],k0.
降 中 心 列 : G 1 = G , G k + 1 = [ G , G k ] , k ≥ 1 , ( 为 什 么 叫 降 中 心 列 ? ) 降中心列:G^{1} = G, G^{k+1} = [G, G^{k}], k \geq 1, (为什么叫降中心列?) :G1=G,Gk+1=[G,Gk],k1,(?)
升 中 心 列 : C 0 ( G ) = { 1 } , C k + 1 ( G ) = π k − 1 ( C ( G / C k ( G ) ) ) , k ≥ 0. 这 里 π k : G → G / C k ( G ) . 升中心列:C_0(G) = \lbrace 1 \rbrace, C_{k+1}(G) = \pi_{k}^{-1}(C(G/C_k(G))), k \geq 0.这里\pi_k : G \to G/C_k(G). :C0(G)={1},Ck+1(G)=πk1(C(G/Ck(G))),k0.πk:GG/Ck(G).
例 4.6.8. G = S 3 , A 3 {\color{blue}例4.6.8.}G = S_3,A_3 4.6.8.G=S3,A3
G = S 4 ⊃ A 4 ⊃ K 4 ⊃ ⟨ ( 12 ) ( 34 ) ⟩ ⊃ { 1 } . G = S_4 \supset A_4 \supset K_4 \supset \lang(12)(34) \rang \supset \lbrace 1 \rbrace. G=S4A4K4(12)(34){1}.
G = S n , n ≥ 5 , G = S_n, n \geq 5, G=Sn,n5,
p − 群 p-群 p
定 义 4.6.9. 群 G 中 的 子 群 序 列 {\color{blue}定义4.6.9.}群G中的子群序列 4.6.9.G
G = G 1 ⊃ G 2 ⊃ ⋯ ⊃ G t ⊃ G t + 1 = { 1 } \qquad G = G_1 \supset G_2 \supset \cdots \supset G_t \supset G_{t+1} = \lbrace 1 \rbrace G=G1G2GtGt+1={1}
若 满 足 G i + 1 ⊲ G i ( i = 1 , … , t ) , 则 称 之 为 次 正 规 序 列 , t 称 为 此 序 列 的 长 度 , G i / G i + 1 为 此 序 列 的 因 子 。 若满足G_{i+1} \lhd G_i(i=1,\dots,t),则称之为{\color{blue}次正规序列},t称为此序列的{\color{blue}长度},G_i/G_{i+1}为此序列的{\color{blue}因子}。 Gi+1Gi(i=1,,t),,t,Gi/Gi+1
若 在 上 述 序 列 中 G i ⊲ G , 则 称 此 序 列 为 正 规 序 列 。 若在上述序列中G_i \lhd G,则称此序列为{\color{blue}正规序列}。 GiG,
定 义 4.6.10. 可 解 群 : 存 在 k , 使 得 G ( k ) = { 1 } . {\color{blue}定义4.6.10.}{\color{blue}可解群}:存在k,使得G^{(k)} = \lbrace 1 \rbrace. 4.6.10.:k,使G(k)={1}.
幂 零 群 : 存 在 k , 使 得 G k = { 1 } . {\color{blue}幂零群}:存在k,使得G^{k} = \lbrace 1 \rbrace. :k,使Gk={1}.
? ? ? : 群 在 k , 使 得 C k ( G ) = G . ( p − 群 ) . ???:群在k,使得C_k(G) = G.(p-群). ???:k,使Ck(G)=G.(p).
注 记 4.6.11. {\color{blue}注记4.6.11.} 4.6.11.
1)Abel群幂零。
2)幂零群可解,幂零群的中心不是平凡的。
3)可解群和Abel群的来历。
4)Burnside猜想:1902,奇数阶群都是可解的。
Feit-Thompson定理。Feit-Thompson猜想。
5)M.Aschbacher and S. Smith,The classification of quasithin groups I,II pp1221.
引 理 4.6.12. 可 解 群 的 子 群 、 商 群 都 是 可 解 群 。 {\color{blue}引理4.6.12.}可解群的子群、商群都是可解群。 4.6.12.
反 之 , N ⊲ G , N 和 G / N 可 解 , 则 G 可 解 。 反之,N \lhd G, N和G/N可解,则G可解。 NG,NG/NG
定 理 4.6.13. 设 群 G 是 B 过 A 的 扩 张 , 则 G 可 解 当 且 仅 当 A , B 都 可 解 。 {\color{blue}定理4.6.13.}设群G是B过A的扩张,则G可解当且仅当A,B都可解。 4.6.13.GBAGA,B
例 4.6.14. ∣ G ∣ &lt; 60 , 则 G 可 解 。 {\color{blue}例4.6.14.}|G| &lt; 60,则G可解。 4.6.14.G<60,G
定 理 4.6.15. 设 G 是 群 , 则 下 列 条 件 等 价 : {\color{blue}定理4.6.15.}设G是群,则下列条件等价: 4.6.15.G:
1 ) G 是 可 解 群 ; 1)G是可解群; 1)G
2 ) 存 在 G 的 正 规 序 列 G = G 1 ⊃ G 2 ⊃ ⋯ ⊃ G t + 1 = { 1 } 使 得 G i / G i + 1 为 A b e l 群 ; 2)存在G的正规序列G = G_1 \supset G_2 \supset \cdots \supset G_{t+1} = \lbrace 1 \rbrace 使得G_i / G_{i+1}为Abel群; 2)GG=G1G2Gt+1={1}使Gi/Gi+1Abel;
3 ) 存 在 G 的 次 正 规 序 列 G = G 1 ′ ⊃ G 2 ′ ⊃ ⋯ ⊃ G s + 1 ′ = { 1 } 使 得 G i / G i + 1 为 A b e l 群 ; 3)存在G的次正规序列G=G_1^{\prime} \supset G_2^{\prime} \supset \cdots \supset G_{s+1}^{\prime} = \lbrace 1 \rbrace 使得G_i/G_{i+1}为Abel群; 3)GG=G1G2Gs+1={1}使Gi/Gi+1Abel;
4 ) 存 在 G 的 次 正 规 序 列 G = G 1 ′ ′ ⊃ G 2 ′ ′ ⊃ ⋯ ⊃ G r + 1 ′ ′ = { 1 } 使 得 G i / G i + 1 为 素 数 阶 群 。 4)存在G的次正规序列G=G_1^{\prime \prime} \supset G_2^{\prime \prime} \supset \cdots \supset G_{r+1}^{\prime \prime} = \lbrace 1 \rbrace 使得G_i/G_{i+1}为素数阶群。 4)GG=G1G2Gr+1={1}使Gi/Gi+1
证:3) ⇒ \Rightarrow 4)考虑长度最长的满足3)的次正规序列。或者从G的极大真正规子群开始。
引 理 4.6.16. 幂 零 群 的 子 群 、 商 群 都 是 幂 零 群 。 {\color{blue}引理4.6.16.}幂零群的子群、商群都是幂零群。 4.6.16.
反 之 , N ⊲ G , N 和 G / N 幂 零 , 则 G 幂 零 ( ? ) 。 反之,N \lhd G,N和G/N幂零,则G幂零(?)。 NG,NG/NG(?)
幂 零 群 过 幂 零 群 的 中 心 扩 张 ( 扩 张 核 在 群 的 中 心 里 ) 和 平 凡 扩 张 是 幂 零 群 。 幂零群过幂零群的中心扩张(扩张核在群的中心里)和平凡扩张是幂零群。 ()
注 记 4.6.17. 次 正 规 序 列 对 幂 零 群 不 适 用 。 {\color{blue}注记4.6.17.}次正规序列对幂零群不适用。 4.6.17.
定 理 4.6.18. 是 G 是 群 , 则 下 列 条 件 等 价 : {\color{blue}定理4.6.18.}是G是群,则下列条件等价: 4.6.18.G:
1 ) G 是 幂 零 群 ; 1)G是幂零群; 1)G;
2 ) 存 在 G 的 正 规 序 列 G = G 1 ⊃ G 2 ⊃ ⋯ ⊃ G t + 1 = { 1 } 使 得 [ G , G i ] ⊂ G i + 1 ; 2)存在G的正规序列G=G_1\supset G_2 \supset \cdots \supset G_{t+1} = \lbrace 1 \rbrace使得[G,G_{i}] \subset G_{i+1}; 2)GG=G1G2Gt+1={1}使[G,Gi]Gi+1;
3 ) 存 在 G 的 正 规 序 列 G = G 1 ⊃ G 2 ⊃ ⋯ ⊃ G t + 1 = { 1 } 使 得 G i / G i + 1 ⊂ C ( G / G i + 1 ) ; 3)存在G的正规序列G = G_1 \supset G_2 \supset \cdots \supset G_{t+1} = \lbrace 1 \rbrace 使得G_i/G_{i+1} \subset C(G/G_{i+1}); 3)GG=G1G2Gt+1={1}使Gi/Gi+1C(G/Gi+1);
4 ) 存 在 k , 使 得 C k ( G ) = G . 4)存在k,使得C_k(G)=G. 4)k,使Ck(G)=G.
证 : 3 ) ⇒ 4 ) 证:3) \Rightarrow 4) :3)4)
4 ) ⇒ 1 ) G / C k − 1 是 A b e l 群 4) \Rightarrow 1) G/C_{k-1}是Abel群 4)1)G/Ck1Abel
例 4.6.19. p − 群 是 幂 零 群 。 {\color{blue}例4.6.19.}p-群是幂零群。 4.6.19.p

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值