多接入边缘计算赋能的AI质检系统任务实时调度策略

源自:电子与信息学报

作者:周晓天, 孙上, 张海霞, 邓伊琴, 鲁彬彬

“人工智能技术与咨询”  发布

摘 要

AI质检是智能制造的重要环节,其设备在进行产品质量检测时会产生大量计算密集型和时延敏感型任务。由于设备计算能力不足,执行检测任务时延较大,极大影响生产效率。多接入边缘计算(MEC)通过将任务卸载至边缘服务器为设备提供就近算力,提升任务执行效率。然而,系统中存在信道变化和任 务随机到达等动态因素,极大影响卸载效率,给任务调度带来了挑战。该文面向多接入边缘计算赋能的AI质检任务调度系统,研究了联合任务调度与资源分配的长期时延最小化问题。由于该问题状态空间大、动作空间包含连续变量,该文提出运用深度确定性策略梯度(DDPG)进行实时任务调度算法设计。所设计算法可基于系统实时状态信息给出最优决策。仿真结果表明,与基准算法相比,该文所提算法具有更好的性能表现和更小的任务执行时延。

关键词

多接入边缘计算 / 任务调度 / 资源分配 / 深度强化学习 /AI质检系统 

1.   引言

AI质检[1,2]作为智能工业生产中的重要一环,可以有效保障产品生产质量,降本增效。AI 质检过程中所产生如产品商标识别、不合格产品零件检测等智能任务,需要大量计算资源,具有计算密集特征。另外,工业生产流水线对质检的时延要求较高,若任务完成时延过大,会导致生产中断,造成经济损失。因此AI质检任务也是时延敏感型任务。然而,质检终端设备通常计算能力有限,难以在短时间内完成对这些兼具时延敏感和计算密集特性任务的处理。针对这一问题,有研究提出运用云计算赋能的工业物联网技术[3,4] 将任务卸载到远程云中心[5],利用云服务器强算力资源实现任务快速处理。然而,云服务器与设备间物理距离远,任务卸载会引入较长通信时延。此外,大量任务集中式地卸载到同一云服务器进行处理,也为骨干网传输带来压力,易导致网络拥塞。因此,基于云架构的工业物联网中易出现由于通信时延过高所导致的任务端到端整体服务时延非减反增情况,难以满足AI质检的低时延需求。

在此背景下,多接入边缘计算[6,7] (Multi-access Edge Computing, MEC) 作为云计算的演进思路被业界所提出。边缘计算通过分布式地将小型服务器部署在网络边缘以为设备提供就近算力服务。与云架构相比,边缘服务器距离终端更近,任务卸载的通信时延得以减少。而去中心化的分布式部署,又可以避免海量终端集中卸载,缓解骨干网拥塞。因此,相较云计算架构,边缘计算架构可以更好地实现算力下沉,保障AI质检任务时延需求,提升生产效率。但在实际应用中,以无线传输为基础的工业物联网环境动态变化[8,9],任务卸载时延受时变信道衰落等影响严重。此外,边缘计算架构计算资源分布式部署,易导致计算资源与终端计算需求分布不匹配问题。因此,如何设计有效的任务调度与资源分配联合优化策略,以匹配网络环境动态变化,实现AI质检任务长期处理时延最小化,是关键研究点。

围绕这一问题,文献[10]针对具有云边端3层网络架构的系统,建模了以最小化平均应用响应时间为目标的联合计算卸载与带宽分配问题,通过转化为分段凸优化问题求解,获取了最优解。文献[11]针对时延敏感型任务,设计了联合任务分割和资源分配的策略,并提出一种多维度搜索调整(Multi-Dimensional Search and Adjust, MDSA)的离线算法以实现系统时延最小化。文献[12]针对MEC中多边缘服务器协作计算的场景,在存储容量与卸载成功率约束下,将任务队列建模为M/M/s模型,设计了最小化任务平均等待时延的优化问题,并通过1维优化搜索方法获取了资源分配决策方案。文献[13]面向超密集异构边缘计算网络,构建了时延约束下的计算卸载和资源分配联合优化问题,并设计了混合粒子群优化算法进行问题求解。文献[14]则面向多用户MEC网络,设计了最小化能耗的协作式任务卸载与资源管理策略,并采用自适应遗传算法获取了优化方案。

以上研究工作均解决了MEC赋能的工业物联网系统下的任务调度和资源分配问题,但使用了较强的静态环境假设,如任务卸载过程中信道状态不变、任务到达时间间隔固定等,并未将系统长期性能纳入考虑。然而在AI质检系统中,终端设备与人的移动会导致信道衰落变化[8,9],实际任务的产生到达时间也具有随机性。因此,已有工作无法完全契合需要长期持续工作且环境动态变化的AI质检场景。此外,上述研究大多采用传统凸优化或启发式优化算法,求解算法复杂度较高且只能获取准静态的瞬时优化解,并不适用于AI质检场景下随实时感知状态变化的序列决策问题求解。

考虑到信道条件动态变化、任务到达随机等实际情况,本文针对兼具计算密集和时延敏感特性的AI质检任务,以最小化系统长期任务处理时延为目标,研究任务调度与计算资源分配的联合优化问题。由于所建模问题为序列决策问题,本文将其转化为马尔可夫决策过程 (Markov Decision Process, MDP) 进行求解。该MDP问题状态转移概率未知,状态空间大。动作空间内既存在离散的任务卸载决策变量,又包含连续的资源分配决策变量,因此难以采用传统动态规划方法求解。为此,本文借助强化学习手段,提出了一种基于深度确定性策略梯度 (Deep Deterministic Policy Gradient, DDPG)的任务实时调度算法。该算法通过改进Actor网络输出层结构实现了混合动作空间的分离,可以实现对系统环境的实时感知和对任务的实时调度。与已有的研究相比,本文所提基于DDPG的实时任务调度方案可以更好地适应AI质检系统的动态性,实现计算资源的合理优化配置,有效减小系统任务处理时延。仿真实验结果表明,本文所提MEC赋能的AI质检系统中基于DDPG的实时任务调度算法具有快速收敛优势,性能明显优于其他基准方案。

2.   系统建模及问题建立

2.1   系统架构

如图1所示,本文所考虑的MEC赋能AI质检系统由1个MEC服务器和N个AI质检设备组成。边缘云层包含了服务器与集中控制中心,后者负责收集系统环境状态信息、生成任务调度和计算资源分配决策。AI质检设备产生的任务有两种执行模式,可以由设备在本地执行计算,也可以卸载到MEC服务器上进行处理,再将执行结果返回。在该系统中,假设MEC服务器的覆盖半径为L(m),AI质检设备都在其服务范围内,每个设备具有有限的计算资源,设备集合表示为N={1,2,⋯,N} 。假定整个系统以时隙的方式进行工作[15],工作时间持续T个时隙,每时隙长度为Ts。在每时隙开始时,集中控制中心收集系统状态信息,做出任务调度和计算资源分配决策,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值