Sen+Mann-Kendall趋势分析:检验时间序列数据的趋势

本文介绍了使用Sen+Mann-Kendall趋势检验方法进行时间序列数据分析,详细阐述了如何利用非参数统计的Mann-Kendall检验和Sen方法估计趋势斜率,提供Python实现示例,帮助理解并检测数据中的趋势性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间序列数据是在许多领域中常见的数据类型,如气候变化、股票价格、销售趋势等。为了了解时间序列数据是否存在趋势,我们可以使用Sen+Mann-Kendall趋势检验方法。本文将详细介绍如何使用该方法进行趋势检验,并提供相应的源代码示例。

Mann-Kendall趋势检验是一种非参数统计方法,用于检验时间序列数据是否存在单调的趋势。该方法的原假设是数据没有趋势,备择假设是数据存在趋势。Sen方法用于估计趋势的斜率。

首先,我们需要导入所需的Python库,包括numpy和scipy。

import numpy as np
from scipy.stats import kendalltau

接下来,我们定义一个函数来执行Sen+Mann-Kendall趋势检验。

def sen_mann_kendall_test
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值