二叉树的层序遍历
LC102 二叉树的层序遍历
层序遍历的话,就类似广度优先搜索,可以用队列的思想,主要是要用size来控制每一层的处理次数。
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> ans;
queue<TreeNode*> que;
if(root==NULL) return ans;
que.push(root);
while(!que.empty()){
int size=que.size();
vector<int> temp;
while(size--){
TreeNode* cur=que.front();
temp.push_back(cur->val);
if(cur->left) que.push(cur->left);
if(cur->right) que.push(cur->right);
que.pop();
}
ans.push_back(temp);
}
return ans;
}
};
LC107 二叉树的层序遍历2
就是在上一题的基础上对ans进行反转。
class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
vector<vector<int>> ans;
queue<TreeNode*> que;
if(root==NULL) return ans;
que.push(root);
while(!que.empty()){
int size=que.size();
vector<int> temp;
while(size--){
TreeNode* cur=que.front();
que.pop();
temp.push_back(cur->val);
if(cur->left) que.push(cur->left);
if(cur->right) que.push(cur->right);
}
ans.push_back(temp);
}
reverse(ans.begin(),ans.end());
return ans;
}
};
LC199 二叉树的右视图
之前用vector来记录每一行的元素,现在只用一个int来记录每一行的最后一个元素就好了。
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> ans;
queue<TreeNode*> que;
if(root==NULL) return ans;
que.push(root);
while(!que.empty()){
int size=que.size();
int temp;
while(size--){
TreeNode* cur=que.front();
que.pop();
temp=cur->val;
if(cur->left) que.push(cur->left);
if(cur->right) que.push(cur->right);
}
ans.push_back(temp);
}
return ans;
}
};
LC637 二叉树的层平均值
这道题也是个easy。只需要用一个double类型的变量来累加每一层的元素,最后除以这一层的元素数量就好了。
class Solution {
public:
vector<double> averageOfLevels(TreeNode* root) {
vector<double> ans;
queue<TreeNode*> que;
if(root==NULL) return ans;
que.push(root);
while(!que.empty()){
int size=que.size();
double num=size;
double temp=0;
while(size--){
TreeNode* cur=que.front();
que.pop();
temp+=cur->val;
if(cur->left) que.push(cur->left);
if(cur->right) que.push(cur->right);
}
ans.push_back(temp/num);
}
return ans;
}
};
LC429 N叉树的层序遍历
基本和二叉树的方法是一样的,只要是对N叉树不太熟悉。children
不是多个属性,是一个由vector构成的单个属性。所以应该是用children.size()来控制数量。
class Solution {
public:
vector<vector<int>> levelOrder(Node* root) {
vector<vector<int>> ans;
queue<Node*> que;
if(root == NULL) return ans;
que.push(root);
while(!que.empty()){
int size=que.size();
vector<int> temp;
while(size--){
Node* cur=que.front();
que.pop();
temp.push_back(cur->val);
for(int i=0;i<cur->children.size();i++){
que.push(cur->children[i]);
}
}
ans.push_back(temp);
}
return ans;
}
};
LC515 在每个树行中找最大值
只能说爽,学会了层序遍历的模板后,所有的问题都可以用一套算法来通关。
这道题的唯一需要注意的点就是val的范围是-INT到INT,所以一开始的初始值应该设置为INT_MIN。
如果这道题改为找最小值,那么就把初始值改为INT_MAX就好了。
class Solution {
public:
vector<int> largestValues(TreeNode* root) {
vector<int> ans;
queue<TreeNode*> que;
if(root == NULL) return ans;
que.push(root);
while(!que.empty()){
int temp=INT_MIN;
int size=que.size();
while(size--){
TreeNode* cur = que.front();
que.pop();
temp=max(temp,cur->val);
if(cur->left) que.push(cur->left);
if(cur->right) que.push(cur->right);
}
ans.push_back(temp);
}
return ans;
}
};
LC116 填充每个节点的下一个右侧节点指针
中间的处理过程有点像链表。反正也是前后节点的链接。一开始是打算把每一行的最后一个节点单独处理,但后来发现比较麻烦,因为最后一个节点也是要把左右子节点载入的。所以最后看了一下题解,发现单独处理第一个节点会比较方便。
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> que;
if(root == NULL) return root;
que.push(root);
while(!que.empty()){
int size=que.size();
Node* pre;
Node* cur;
for(int i=0;i<size;i++){
if(i==0){
pre=que.front();
que.pop();
cur=pre;
}
else{
cur=que.front();
que.pop();
pre->next=cur;
pre=cur;
}
if(cur->left) que.push(cur->left);
if(cur->right) que.push(cur->right);
}
cur->next=NULL;
}
return root;
}
};
LC117 填充每个节点的下一个右侧节点指针 II
和上一题一模一样,代码都不需要改,自己重新写一遍就当作加深印象了。
LC104 二叉树的最大深度
一样都是用层序遍历的模版,设定一个depth的值,每一层+1,最后输出结果。
class Solution {
public:
int maxDepth(TreeNode* root) {
int ans=0;
if(root == NULL) return 0;
queue<TreeNode*> que;
que.push(root);
while(!que.empty()){
int size=que.size();
ans++;
while(size--){
TreeNode* cur=que.front();
que.pop();
if(cur->left) que.push(cur->left);
if(cur->right) que.push(cur->right);
}
}
return ans;
}
};
LC111 二叉树的最小深度
这道题也非常简单,就是在模板的基础上设置终止条件。当一个子节点没有左右节点时,那就是这棵树的最小深度所在的层。
class Solution {
public:
int minDepth(TreeNode* root) {
int depth=0;
queue<TreeNode*> que;
if(root==NULL) return 0;
que.push(root);
while(!que.empty()){
int size=que.size();
depth++;
while(size--){
TreeNode* cur=que.front();
que.pop();
if(cur->left) que.push(cur->left);
if(cur->right) que.push(cur->right);
if(cur->left==NULL && cur->right==NULL) return depth;
}
}
return depth;
}
};