TensorRT7 安装|ubuntu18.04|cuda 10.2|1080ti

本文介绍了在Ubuntu18.04系统上,由于TensorRT7需要CUDA10.2,因此需要卸载原有CUDA10.1并安装CUDA10.2。详细步骤包括检查系统信息、下载CUDA安装包并安装、设置环境变量,接着安装CuDNN并验证,最后下载TensorRT7,解压并配置环境变量,通过sampleMNIST测试安装是否成功。
摘要由CSDN通过智能技术生成

前言

但是本机原来安装的是CUDA10.1,但是TensorRT7的最新版本需要CUDA10.2,所以先重新安装一个CUDA。
TIPs: 因为之前在win平台上使用过tensorrt,得到的唯一一个结论就是:千万要对应版本!!!无论是安装还是后续的部署,tensorrt都需要cuda和平台类型保持一致。

安装CUDA10.2

检查系统信息

  • 包括系统版本、GPU型号,确认安装合适版本的CUDA
  • 检查gcc版本
gcc --version
# 或者
gcc -v

之前有看到一个说法,CUDA10.2不支持gcc 9,所以最好检查一下。

这里有个问题,我通过ssh连接服务器,但是ssh的终端和直接在服务器上打开的终端显示的内容不一样。
在ssh上能够用gcc --version查询gcc版本,但是直接在服务器终端上会报错,显示gcc找不到'--version'这个程序。
但是使用gcc -v这个指令都能查到gcc版本。

下载CUDA安装包

CUDA10.2英伟达官网下载页面

wget https://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
sudo sh cuda_10.2.89_440.33.01_linux.run

然后就进入到安装界面了。首先是协议,输入accept
接下来是安装选项。因为之前
在这里插入图片描述
安装完成后会出现一个summary,然后就是需要设置一下环境变量

设置环境变量

终端上输入sudo vim /etc/profile,在最后一行后面添加以下内容

export PATH=/usr/local/cuda-10.2/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda10.2/lib64 

如果无效的话,可以尝试在~/.bashrc进行修改。
重启后检查环境变量nvcc -V

安装CuDNN

下载并解压

下载了CUDA10.2下的cudnn7.6.5,这个搭配是比较经典的。
对下载的cudnn压缩包进行解压。

tar -xzvf cudnn-10.2-linux-x64-v7.6.5.32.tgz

复制文件

复制文件到CUDA中,并赋予权限。

sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

验证

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

输出的结果为
在这里插入图片描述
说明安装成功

TensorRT7下载安装

下载并解压

tensorrt官网下载
下载的是TRT7.2.3-Ubuntu_18.04-CUDA_10.2的tar包
注意!一定一定要看准版本!!!!

tar -zxvf TensorRT-7.2.3.4.Ubuntu-18.04.x86_64-gnu.cuda-10.2.cudnn8.1.tar.gz

上面下载的是cudnn8.1的…到最后测试的时候报错…
重申!Ubuntu18.04+CUDA10.2+cuDNN7.6.5
所以下载的TRT7.0.0.11版本…trt7.0.0.11下载链接

重新来一次

tar -zxvf TensorRT-7.0.0.11.Ubuntu-18.04.x86_64-gnu.cuda-10.2.cudnn7.6.tar.gz

将解压后的文件移动到自己想要存放的位置

添加环境变量

vim ~/.bashrc,然后修改自己的tensorrt路径

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/TensorRT-7.0.0.11/lib

输入source ~/.bashrc激活一下设置

测试

因为主要想使用C++ API,所以没有配置python API
进行测试一下

cd ~/你的路径/TensorRT-7.0.0.11/samples/sampleMNIST
make

在这里插入图片描述
执行bin目录下的可执行文件,位置在make之后的输出中
在这里插入图片描述
运行可执行文件

./../../bin/sample_mnist

然后发现没有数据…
后来发现在TensorRT-7.0.0.11/data/mnist中有个py文件能够下载数据
执行该文件

python downloads_pgms.py

然后在文件夹下会出现10个数字的图片。
此时再进行之前的操作

./../../bin/sample_mnist

得到以下结果
在这里插入图片描述

清除之前编译的可执行文件及配置文件

make clean

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值