【Pandas驯化-07】DataFrame中无所不能的pivot函数

【Pandas驯化-07】DataFrame中无所不能的pivot函数
 
本次修炼方法请往下查看
在这里插入图片描述

🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地!
🎇 相关内容文档获取 微信公众号
🎇 相关内容视频讲解 B站

🎓 博主简介:AI算法驯化师,混迹多个大厂搜索、推荐、广告、数据分析、数据挖掘岗位 个人申请专利40+,熟练掌握机器、深度学习等各类应用算法原理和项目实战经验

🔧 技术专长: 在机器学习、搜索、广告、推荐、CV、NLP、多模态、数据分析等算法相关领域有丰富的项目实战经验。已累计为求职、科研、学习等需求提供近千次有偿|无偿定制化服务,助力多位小伙伴在学习、求职、工作上少走弯路、提高效率,近一年好评率100%

📝 博客风采: 积极分享关于机器学习、深度学习、数据分析、NLP、PyTorch、Python、Linux、工作、项目总结相关的实用内容。

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


下滑查看解决方法

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

🎯 1. 基本介绍

  在数据处理中,经常需要对数据进行重塑以适应不同的分析需求。Pandas 提供了 pivot 函数,允许用户重构长格式(long format)的数据为宽格式(wide format),通过指定索引(index)、列(columns)和值(values),可以快速地创建一个新的派生表,使得数据的展示更加直观。

💡 2. 使用方法

   为了使得大家更加清晰的看情况pivot函数的用法,我们创建示例 DataFrame并再次基础上进行实验,具体的代码如下:

import pandas as pd

# 创建一个示例 DataFrame
df = pd.DataFrame({
    'Person': ['John', 'John', 'Lisa', 'Lisa'],
    'Year': [2017, 2018, 2017, 2018],
    'Age': [24, 25, 35, 36]
})

# 显示原始 DataFrame
print("原始 DataFrame:")
print(df)

原始 DataFrame:
    Person  Year  Age
0    John  2017   24
1    John  2018   25
2    Lisa  2017   35
3    Lisa  2018   36

  使用 pivot 函数,我们可以将 ‘Person’ 作为行索引,‘Year’ 作为列,‘Age’ 作为值。具体操作如下:

# 使用 pivot 重塑 DataFrame
pivot_df = df.pivot(index='Person', columns='Year', values='Age')

# 显示 pivot 后的 DataFrame
print("\npivot 后的 DataFrame:")
print(pivot_df)

pivot 后的 DataFrame:
      Year      
2017    2018
John   24     25
Lisa   35     36

  

🔍 3. 注意事项

  对上述的各个函数在使用的过程中需要注意的一些事项,不然可能会出现error,具体主要为:

  • pivot 函数要求 values 参数指定的列只能有一个,如果存在多个,则需要先进行数据聚合。
  • 使用 pivot 时,如果某些索引和列的组合在原始数据中不存在,Pandas 会填充缺失值(NaN)。
  • pivot 可以与 pivot_table 函数结合使用,pivot_table 提供了更多的灵活性,如数据聚合和处理多重索引。

🔧 4. 总结

  pivot 函数是 Pandas 中一个非常有用的工具,它可以帮助我们将长格式的数据转换为宽格式,使得数据的展示更加直观,便于分析。本文通过实际的代码示例和输出结果,展示了如何使用 pivot 函数来重塑 DataFrame。希望这篇博客能够帮助你更好地理解并应用 pivot 函数来处理你的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法驯化师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值