【Python】导函数 及 求解微分方程

    如何用Python求解微分方程,主要是基于Python的 sympy 库来进行微分运算,sympy库的 diff函数主要用于导函数,dsolve函数用于解微分方程。

导函数

import sympy as sp

# 定义符号变量
x = sp.symbols('x')

# 定义函数
f = sp.sin(x) * sp.exp(x)

# 求导
f_prime = sp.diff(f, x)  # f 对于 x 求导

# 输出导函数
print("函数的导函数:", f_prime)

微分方程

import sympy as sp

# 定义符号变量和未知函数
x = sp.symbols('x')
y = sp.Function('y')

# 定义微分方程
diff_eq = sp.Eq(sp.diff(y(x), x, x) + 2*sp.diff(y(x), x) + y(x), 0)

# 求解微分方程
solution = sp.dsolve(diff_eq, y(x))

# 输出微分方程的解
print("微分方程的解:", solution)

示例 1 :

在这里插入图片描述

import sympy as sp

# 定义符号变量
t = sp.symbols('t')
x = sp.Function('x')

# 定义微分方程
eq = sp.Eq(x(t).diff(t, t) + 9 * x(t), t * sp.sin(3 * t))

# 求解微分方程
sol = sp.dsolve(eq)

# 打印结果
print("微分方程的通解:", sol)

示例 2 :

在这里插入图片描述


import sympy as sp


# 定义符号变量
t = sp.symbols('t')
x = sp.Function('x')

# 定义微分方程
eq = sp.Eq(x(t).diff(t, t) + 2 * x(t).diff(t) + 5 * x(t), 4 * sp.exp(-t) + 17 * sp.sin(2 * t))


# 求解微分方程
sol = sp.dsolve(eq)

# 打印结果
print("微分方程的通解:", sol)

示例 3 :

在这里插入图片描述

# 求解微分方程
import sympy as sp

# 定义符号变量
t = sp.symbols('t')
x = sp.Function('x')

# 定义微分方程
eq = sp.Eq(t * x(t).diff(t, t) - 2 * (1 + t) * x(t).diff(t) + (2 + t) * x(t), 0)

# 求解微分方程
sol = sp.dsolve(eq)

# 打印结果
print("微分方程的通解:", sol)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苗半里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值