三种办法,轻松计算马德里商标费用

http://www.tm4world.com/archives/273


  马德里商标注册体系越来越受到中国企业的青睐,尤其目前国家工商总局商标局大力宣传这一便捷的注册途径,现在商标局或商标协会几乎每年都会举办几次有关马德里商标的培训,然而,四正发现,在代理马德里商标注册过程中,还是有为数不少的代理人不会计算马德里商标的注册费用,或者会计算但费用依据的又不是最新标准,因此,我感觉快速并正确的计算马德里商标费用是一件十分重要的事情。
  本文将介绍三种办法来计算马德里商标费用,只需要你耐心的用上五分钟,就可以轻松掌握马德里商标费用的计算方法。

  首先,介绍第一种办法。即是马德里商标费用的基本构成,然后自己手工计算,这种办法相对费时,但也是我们必须掌握的一种办法,因为这是最基础的知识。
  马德里商标的注册费用构成,通常来讲是有三个部分来组成,第一部分是国际局收取的基础注册费,即653瑞士法郎(国内商标为指定颜色的,则基础注册费收取903瑞士法郎),这一笔费用是办理马德里商标必交的一笔基础官费,然后当你选择要指定延伸的国家后,再根据选择的国家不同而缴纳不同的费用,第二部分及第三部分收取的费用为补充注册费、单独规费,补充注册费是按100瑞士法郎收取的,一个最简单的判断办法就是“单独规费表里没有的马德里成员国均收取100瑞士法郎”,那么这样一理解,计算费用时就非常容易了,根据马德里成员国表选择好要指定的国家后按如下公式计算即可:653+100*N+M,其中N代表收取100瑞士法郎的国家,M代表单独规费的国家,具体国家的单独收费请查阅单独规费表(20120312更新)。
  上面介绍的是马德里商标注册注册的费用构成,举例来说明一下,办理法国、英国、德国三国情况下,费用即653+100*2+262=1115瑞士法郎,这其中653就是上述所说的基础注册费,100为补充注册费,法国和德国在单独规费表中是没有的,因此是收取100瑞士法郎的,而英国是收取单独规费的,这样算下来,三国通过马德里来办理即需要1115瑞士法郎。
  在此,仅介绍注册的费用计算办法,而涉及到其他的费用构成请查阅:2008年9月1日最新更新的《马德里商标规费表中英对照》,这个规费表是根据WIPO提供的英文内容进行的中英翻译而来,目前仅限论坛会员下载,如非论坛会员的可以在新浪微博上@ourgold索要邀请码注册会员后下载。如果不想注册论坛也不要紧,可以按照如下方法来熟悉和掌握马德里其他业务的费用构成。附:马德里成员国名单
  其次,介绍第二种办法。就是通过四正自制的自动计算器来计算,该表格模拟了WIPO的官方计算器,该表其实用法和WIPO类似,但WIPO官方计算器全是英文,因此,该表作为补充可以帮助不习惯英文网页的朋友使用。
  该表还具备了WIPO官方计算器没有的功能,就是限定指定国家的类别数,由于表格无法在文中体现,因此,可以打开下面这个视频详细查看。
        打开播放教程视频:马德里自动计算小工具使用教程(四正原创)下载:马德里费用工具
  最后,介绍第三种办法。本人其实最为推荐这种办法,就是用WIPO官方计算器,由于马德里商标的单独规费时常有更新,用官方的计算器来计算可以保证费用是最新的标准,因此,也是最为准确的一种办法,四正也是常常在使用前2种办法之后会在官方计算器中进行校对,有的时候甚至直接使用。
  http://www.wipo.int/madrid/en/fees/calculator.jsp打开这个网址,然后配合下面一个视频来学习如何使用WIPO官方费用计算器。
        打开播放教程视频:WIPO官方计算器使用教程
  至此,本文介绍了三种办法来计算马德里商标的各种费用,非常简单,另外,需要进一步了解什么是马德里商标的话,可以在本资料库中查阅《究竟什么是马德里商标》一文。


数据集介绍:多品类农业目标检测数据集 数据集名称:多品类农业目标检测数据集 图片数量: - 训练集:11,911张图片 - 验证集:422张图片 - 测试集:124张图片 - 总计:12,457张高质量图片 分类类别: 涵盖51个农业相关类别,包括水果(苹果、香蕉、芒果、葡萄)、蔬菜(卷心菜、黄瓜、茄子、菠菜)、坚果(杏仁、腰果、榛子、核桃)、调味作物(辣椒、生姜、大蒜)及肉类(牛肉、鸡肉、猪肉)等,完整覆盖农业生产链关键品类。 标注格式: YOLO格式,包含标准化边界框坐标及类别标签,可直接用于目标检测模型训练。 1. 农业自动化分拣系统 支持开发AI驱动的分拣机器人,精准识别水果成熟度、坚果品类及蔬菜质量,提升加工效率。 1. 智能农场监测 用于无人机或摄像头系统,实时检测作物生长状态、病虫害区域及成熟作物分布。 1. 食品加工质量控制 集成至生产线视觉系统,自动检测原料种类(如肉类分类、坚果筛选),确保加工合规性。 1. 农业科研与教育 为农业院校提供多品类检测基准数据,支持算法研究及教学案例开发。 全链路覆盖 从田间作物(甜玉米、土豆)到加工原料(肉类、坚果),覆盖农业生产-加工全流程检测需求。 标注专业性 YOLO标注经多轮校验,边界框紧密贴合目标,支持复杂场景下的密集目标检测(如混合坚果分拣)。 场景多样性 包含自然光照、阴影遮挡、多角度拍摄等真实农业环境数据,强化模型鲁棒性。 高扩展性 兼容YOLOv5/v7/v8等主流框架,支持快速迁移至分类、计数等衍生任务。
高空视角多目标检测数据集 数据集名称:高空视角多目标检测数据集 验证集规模:4,106张航拍图片 分类类别: - 体育设施:棒球场/篮球场/足球场/网球场/田径场 - 交通设施:桥梁/大型车辆/小型车辆/船舶/直升机 - 工业设施:集装箱起重机/储油罐/港口 - 地理特征:圆形交通环岛/游泳池 - 航空器:飞机 标注特性: - YOLO格式多边形标注,支持旋转目标检测 - 包含密集小目标标注(如船舶、车辆) - 多角度航拍视角覆盖 无人机智能巡检系统: 支持电力巡检、交通监控等场景的自动目标识别,实现基础设施的智能巡查与异常检测 卫星影像解析系统: 适用于城市发展规划、港口物流管理等领域的卫星影像自动分析 地理信息系统(GIS)更新: 自动化识别地表建筑变化,辅助地图数据实时更新 应急救援支持: 灾害现场的直升机坪识别、道路通行性评估等应急场景应用 智慧城市建设: 支持城市三维建模、交通流量分析等智慧城市应用场景 高价值目标覆盖: 包含16类关键基础设施目标,特别涵盖港口起重机、储油罐等工业场景稀缺标注数据 复杂场景标注: - 支持旋转框检测,适应航拍目标的任意朝向 - 密集小目标标注经专业质检,保证重叠目标的识别精度 多尺度特征学习: 包含从大型机场到小型车辆的跨尺度目标,提升模型尺度适应能力 实战验证数据: 专为模型验证优化的数据集,包含光照变化、目标遮挡等真实场景挑战 算法兼容性强: YOLO格式标注可直接适配主流检测框架(YOLO系列、MMDetection等),支持旋转目标检测算法开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值