LangChain + Qwen(DashScope API)


引言

常见的 RAG 示例,一般使用 OpenAI,你也可以使用 Qwen 作为 LLM。
在 LangChain 中,调用 Tongyi 来实现。(而不是 Qwen)

官方文档描述:
https://python.langchain.com/docs/integrations/llms/tongyi
中文:http://docs.autoinfra.cn/docs/integrations/llms/tongyi


如果你想看 langchain 支持哪些 llm,也可以前往代码安装包查看,我的地址是:
~/miniconda3/lib/python3.11/site-packages/langchain_community/llms


DashScope API KEY

关于 DashScope 我的小结:
https://blog.csdn.net/lovechris00/article/details/136938486

你需要在阿里云平台,创建 DashScope API KEY。
创建前,需要经过实名认证。

https://help.aliyun.com/document_detail/611472.html


代码

import os
from langchain_community.llms import Tongyi

DASHSCOPE_API_KEY = 'sk-xxxx'
os.environ["DASHSCOPE_API_KEY"] = DASHSCOPE_API_KEY

text = "What NFL team won the Super Bowl in the year Justin Bieber was born?"
Tongyi().invoke(text)  

from langchain_core.prompts import PromptTemplate

# llm = Tongyi()
llm = Tongyi(dashscope_api_key=DASHSCOPE_API_KEY)

# 指定模型
llm=Tongyi(model_name="qwen-plus",temperature=0.1)

template = """Question: {question}

Answer: Let's think step by step."""

prompt = PromptTemplate.from_template(template)

chain = prompt | llm

question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"

chain.invoke({"question": question})


'Justin Bieber was born on March 1, 1994. The Super Bowl that took place in the same calendar year was Super Bowl XXVIII, which was played on January 30, 1994. The winner of Super Bowl XXVIII was the Dallas Cowboys, who defeated the Buffalo Bills with a score of 30-13.'

 

可用模型及费用

本文记录于 2024-03-19

https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-thousand-questions-metering-and-billing


模型说明

模型名称模型简介模型输入/输出限制
qwen-turbo通义千问超大规模语言模型,支持中文、英文等不同语言输入。模型支持8k tokens上下文,为了保证正常的使用和输出,API限定用户输入为6k tokens
qwen-plus通义千问超大规模语言模型增强版,支持中文、英文等不同语言输入。模型支持32k tokens上下文,为了保证正常的使用和输出,API限定用户输入为30k tokens
qwen-max通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。随着模型的升级,qwen-max将滚动更新升级,如果希望使用稳定版本,请使用qwen-max-1201。模型支持8k tokens上下文,为了保证正常的使用和输出,API限定用户输入为6k tokens
qwen-max-1201通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。模型支持8k tokens上下文,为了保证正常的使用和输出,API限定用户输入为6k tokens
qwen-max-longcontext通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。模型支持30k tokens上下文,为了保证正常的使用和输出,API限定用户输入为28k tokens

计费单价

模型服务: 通义千问

模型名计费单价
qwen-turbo
qwen-plus0.02元/1,000 tokens
qwen-max0.12元/1,000 tokens
qwen-max-1201同上
qwen-max-longcontext同上

说明

  • qwen-turbo原来为qwen-v1(已弃用)。
    qwen-v1计费与qwen-turbo保持一致。
  • qwen-plus原来为qwen-plus-v1(已弃用)。
    qwen-plus-v1计费与qwen-plus保持一致。

免费额度

模型名免费额度
qwen-turbo开通DashScope即获赠总计 2,000,000 tokens限时免费使用额度,有效期 180 天。
qwen-plus开通DashScope即获赠总计 1,000,000 tokens限时免费使用额度,有效期 180 天。
qwen-max开通DashScope即获赠总计1,000,000 tokens限时免费使用额度,有效期30天。
qwen-max-1201同上
qwen-max-longcontext同上

重要

免费额度将在开通服务后的下一个整点生效。
例如,您在15:30开通灵积服务,您的免费额度将在16:00后生效,将抵扣您16:00后产生的账单费用。


伊织 2024-03-19(二)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

富婆E

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值