Langchain + Ollama

本文介绍了如何通过Ollama和LangChain工具在Python中实现本地部署大模型并创建知识库,包括使用Ollama的两种方式:直接加载模型和通过langchain_community进行模型拉取,以及示例了如何进行问答操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


方式一:Ollama 运行起来后,使用 langchain 加载

from langchain.llms import Ollama
ollama = Ollama(base_url='http://localhost:11434',
model="llama2")
print(ollama("why is the sky blue"))

方式二:使用 langchain_community

1、下载 Ollama : https://ollama.com/download

2、运行命令,拉取模型

ollama pull llama2

3、运行代码

from langchain_community.llms import Ollama
llm = Ollama(model="llama2")

llm.invoke("how can langsmith help with testing?")

参考:https://python.langchain.com/docs/get_started/quickstart


参考文章:


伊织 2024-03-20

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值