用ENVI评价分类精度

(1)首先需要将外部程序生成的分类文件转化为ENVI可以识别的分类图,方法如下:

Envi打开图像->Tools->Color Mapping->Density Slice->Set default numer of ranges(设置为聚类数目)->Applydefault ranges->output ranges to class image


(2)对分类结果进行合并与命名,方法参见博客:

http://blog.sina.com.cn/s/blog_764b1e9d01014m6f.html


(3)从参考影像(高分辨率影像)上选取ROI并命名,方法:

Envi打开图像->Tools->Region of Interest->ROI Tools


(4)将ROI文件与分类图像相关联,方法:

Basic Tools->Region of Interest->Reconcile ROIs Parameters->输入参考影像->输入分类影像


(5)Classification->Post Classification->Confusion Matrix->Using Ground Truth ROIs



### 回答1: Kappa系数是一种用于衡量分类器的精度的统计量,它考虑到了分类器的正确率和误报率。Kappa系数的范围在-1到1之间,其中-1表示完全不一致,0表示随机一致,1表示完全一致。 首先需要计算混淆矩阵,它是一个2x2的矩阵,其中第一行表示实际情况是阳性或阴性,第二行表示分类器的预测结果是阳性或阴性。然后,可以使用下面的公式计算Kappa系数: Kappa = (P_o - P_e) / (1 - P_e) 其中P_o表示观察到的分类器的准确率,P_e表示预期的分类器准确率。P_e的计算方式为: P_e = (a+b/c+d)^2 + (a+c/b+d)^2 其中a表示分类器正确地预测阳性的数量,b表示分类器错误地预测阳性的数量,c表示分类器错误地预测阴性的数量,d表示分类器正确地预测阴性的数量。 Kappa系数越接近1,表示分类器的效果越好。 ### 回答2: Kappa系数是一种常用于衡量分类准确度的统计学指标,可用于评价Envi图像分类精度。Kappa系数的取值范围为-1到1之间,数值越接近1表示分类结果的一致性越高,数值越接近-1则表示分类结果的一致性越差。 Kappa系数的计算基于实际分类结果和预测分类结果之间的一致性。首先,我们需要创建一个混淆矩阵,该矩阵显示了实际分类和预测分类的对应关系。在混淆矩阵中,对角线上的元素表示分类正确的样本数,而非对角线上的元素表示分类错误的样本数。 通过计算混淆矩阵中各个类别的分类准确率以及总体分类准确率,我们可以得到Kappa系数的计算公式如下: Kappa = (总体分类准确率 - 期望分类准确率) / (1 - 期望分类准确率) 其中,期望分类准确率是基于随机分类假设计算得出的分类准确率。 Kappa系数对于评价分类算法的性能非常有用,特别是在样本不平衡或类别不均衡的情况下。它对于不同类别之间的误差敏感,能够更准确地评估分类的一致性。 综上所述,通过计算混淆矩阵并使用Kappa系数,我们可以客观地评价Envi图像分类算法的精度,为分类结果的一致性提供准确的度量。 ### 回答3: Kappa系数是一种常用的评价分类模型准确度的统计方法,用于衡量两个分类器的一致性程度。在环境精度评价中,Kappa系数可以用来评估一个自动分类模型对环境要素的分类准确度和一致性。 Kappa系数的计算基于混淆矩阵,混淆矩阵是一个二维表格,包含了预测分类结果和实际分类结果之间的交叉项。在环境精度评价中,可以将混淆矩阵的行表示为实际环境要素的类别,列表示为模型预测的分类结果。而每个交叉项则表示了模型正确分类了多少个环境要素,或者错误分类了多少个环境要素。 通过计算混淆矩阵中的各项元素及总和,可以得到模型对环境要素分类的准确度指标。Kappa系数的计算公式为:Kappa = (P0 - Pe) / (1 - Pe),其中P0表示被观察到的分类准确度,Pe表示偶然一致性的期望。 Kappa系数的取值范围为-1到1,其中1表示完全一致,0表示与偶然一致性相同,而-1表示完全不一致。根据Kappa系数的取值,可以对自动分类模型的准确度进行评价。一般而言,Kappa系数在0.61-0.80之间被认为是良好的准确度,而0.81以上则被认为是非常好的准确度。 综上所述,Kappa系数是一种用于评估环境精度评价中自动分类模型准确度和一致性的重要指标。通过对混淆矩阵的计算,能够得到Kappa系数的具体数值,从而对模型的分类准确度进行准确评估。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值