DGL GAT

这篇博客探讨了在DGL库中实现GAT(Graph Attention Network)时遇到的问题及解决方案,包括graph数据类型错误,特别是对于DGLHeteroGraph的要求,以及在GPU上运行DGLGraph时遇到的设备不匹配问题。博主分享了如何将graph移动到GPU以及避免多卡环境中的错误。
摘要由CSDN通过智能技术生成

GAT
DGL document
DGL GAT
DGL官方教程GAT

# Case 1: Homogeneous graph
pip install dgl

import dgl
import numpy as np
import torch as th
from dgl.nn import GATConv

g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3]))
# print(g)
# print(g.nodes())
# pri
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值