Lidar-MOS 安装与使用

本文介绍如何安装配置Lidar-MOS并将其与ROS2结合使用。通过SalsaNext等模块进行动态障碍物滤除实验,并提供了从环境搭建到使用的详细步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

前段时间去大概了解了如何去滤除动态障碍物的问题,也根据调研去做了一些工作,这一篇文章主要向大家展示如何将Lidar-MOS和ROS2结合起来去使用。

1. 环境安装

文中使用了Salsanext,Rangenet ++和Mine三个模块作为baseline来设计和测试动态障碍物滤除的工作,其中的语义分割工作都是目前已有的,可以去原项目中查看。
代码下载:

#下载程序
git clone https://github.com/PRBonn/LiDAR-MOS.git
cd data
wget https://www.ipb.uni-bonn.de/html/projects/LiDAR-MOS/LiDAR_MOS_toy_dataset.zip
unzip LiDAR_MOS_toy_dataset 
conda create --name lidar-mos python=3.7
conda activate lidar-mos
pip -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

注意,源代码之前的适配版本是cuda9和cuda10,且版本过旧,这里提供一个新版的requirements.txt

absl-py==0.8.0
astor==0.8.0
cycler==0.10.0
grpcio==1.25.0
h5py==2.10.0
kiwisolver==1.1.0
matplotlib==2.2.3
mock==3.0.5
opencv-contrib-python==4.1.0.25
opencv-python==4.1.0.25
pillow==6.1.0
protobuf==3.10.0
pyparsing==2.4.2
python-dateutil==2.8.0
pytz==2019.2
pyyaml==5.1.1
tensorboard==2.1.0
tensorflow==2.1.0
tensorflow-gpu==2.1.0
tensorflow-estimator==2.1.0
termcolor==1.1.0
torch==1.6.0
torchvision==0.7.0 
PyQt5
pyqt5-tools 
tqdm

2. 使用SalsaNext作为baseline

2.1 生成残差图像

要使用Lidar-mos的方法,生成残差图像:

  $ python3 utils/gen_residual_images.py

2.2 推断数据

首先我们会拿取kitti数据集文件,并下载预验证的模型来生成LiDAR-MOS预测(download)。

  $ cd mos_SalsaNext/train/tasks/semantic
  $ python3 infer.py -d ../../../../data -m ../../../../data/model_salsanext_residual_1 -l ../../../../data/predictions_salsanext_residual_1_new -s valid

2.3 训练数据

要从零开始使用SalsaNext训练激光雷达MOS网络,必须下载KITTI-Odometry datasetSemantic-Kitti dataset:

  $ cd mos_SalsaNext
  $ ./train.sh -d ../data -a salsanext_mos.yml -l path/log -c 0  # the number of used gpu cores

评估和可视化

How to evaluate

评估指标。让我们将移动(动态)状态称为D,将静态状态称为s

由于我们忽略了未标记和无效状态,因此在MOD中只有两个类。

GT\Predictiondynamicstatic
dynamicTDFS
staticFDTS
  • I o U M O S = T D T D + F D + F S IoU_{MOS} = \frac{TD}{TD+FD+FS} IoUMOS=TD+FD+FSTD

要评估LiDAR_MOS_toy_dataset上的MOS结果,只需运行
To evaluate the MOS results on the toy dataset just run:

  $ python3 utils/evaluate_mos.py -d data -p data/predictions_salsanext_residual_1_valid -s valid

要在我们的激光雷达MOS基准上评估MOS结果,请查看我们的semantic kitti api和基准网站.

How to visualize the predictions

要在LiDAR_MOS_toy_dataset数据集上可视化MOS结果,只需运行

  $ python3 utils/visualize_mos.py -d data -p data/predictions_salsanext_residual_1_new -s 8  # here we use a specific sequence number
  • 'sequence’是要访问的序列。

  • 'dataset’是序列目录所在的kitti数据集的路径。

  • “n”是下一次扫描,

  • “b”是上一次扫描,

  • 'esc’或’q’退出。

下面是运行出来的结果☺
在这里插入图片描述

3. Lidar-MOS与ROS2

这里作者先写了一个初稿,基本含义是将PointCloud2转为bin文件数据格式,并传入Lidar-MOS,然后再将Lidar-MOS的输出结果拿出来,用PointCloud2格式发布出来

…详情请参照古月居

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敢敢のwings

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值