OpenGL学习笔记(三):线性代数

图形学中使用的线性代数是比较简单的,主要设计矢量、矩阵简单的运算。

1. 矢量点积

  • 矢量的单位化
    a ^ = a ⃗ ∥ a ∥ \hat{a}=\frac{\vec{a} }{\left \| a \right \| } a^=aa
  • 矢量的点积

    a ⃗ ⋅ b ⃗ = ∥ a ∥ ∥ b ∥ cos ⁡ θ \vec{a}\cdot\vec{b}=\left \| a \right \|\left \| b \right \|\cos \theta a b =abcosθ
    cos ⁡ θ = a ⃗ ⋅ b ⃗ ∥ a ∥ ∥ b ∥ \cos \theta = \frac{\vec{a}\cdot\vec{b}}{\left \| a \right \|\left \| b \right \|} cosθ=aba b
  • 矢量的点积运算满足交换律、结合律、分配率
    a ⃗ ⋅ b ⃗ = b ⃗ ⋅ a ⃗ a ⃗ ⋅ ( b ⃗ + c ⃗ ) = a ⃗ ⋅ b ⃗ + a ⃗ ⋅ c ⃗ ( k a ⃗ ) ⋅ b ⃗ = a ⃗ ⋅ ( k b ⃗ ) = k ( a ⃗ ⋅ b ⃗ ) \begin{array}{c} \vec{a}\cdot\vec{b} = \vec{b}\cdot\vec{a} \\ \vec{a}\cdot(\vec{b} + \vec{c}) = \vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c} \\ (k\vec{a})\cdot\vec{b} = \vec{a}\cdot(k\vec{b}) = k(\vec{a}\cdot\vec{b}) \end{array} a b =b a a (b +c )=a b +a c (ka )b =a (kb )=k(a b )
  • 矢量点积运算公式

2. 矢量的叉积

  • 叉积运算公式
  • 叉积的在图形学中的用途
    1. 确定向量在另一个向量的左侧或右侧
    2. 确定两个向量所在平面的法线
    3. 确定点在三角形的内部还是外部

3. 矩阵的性质

  1. 不满足交换律
  2. 满足结合律与分配率
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值