paper:https://openreview.net/pdf?id=uKhGRvM8QNH
code:https://github.com/ArchipLab-LinfengZhang/Object-Detection-Knowledge-Distillation-ICLR2021
1、摘要:
开篇paper提到kd之所以在目标检测上的失败主要是两个原因:1、前景和背景之间的像素不平衡。 2、缺乏对不同像素之间的关系的蒸馏。基于这两个原因,本文提出了注意力引导机制和non-local机制来解决,让学生网络能够更加努力的学习teacher的模型,这样不仅能够单个像素的特征,还能够学习non-local模块捕获不同像素之间的关系,paper在one-stage、two-stage、anchor-free上都实现了ap的提升。

1、Introduction
开始介绍了kd在object detection应用难的问题,如下所示:
1、Imbalance between foreground and background
在待检测图像中,背景像素比前景像素更多,在本文之前的kd,student总是被训练区模仿相同特征的所有像素的特征,因此student将大部分注意力都放在了背景像素里面,这抑制了对前景像素的学习,因此本文提出了注意力引导kd的机制,它只蒸馏关键的前景像素,采用注意力机制作为kd的mask,像素中具有较高的注意力值的可以视为前景对象的像素,然后student更高优先级的去学习
2、Lack of distillation on relation information.
现有的kd方法只考虑了单个像素的信息或者特征&#x
本文深入探讨了目标检测中知识蒸馏的挑战,包括前景背景像素不平衡和关系信息缺乏。通过引入注意力引导机制和非局部知识蒸馏,改善学生网络的学习效果。实验表明,这种方法能有效提高一阶段、二阶段和无锚点检测器的AP。论文链接和源码已提供。
最低0.47元/天 解锁文章
167

被折叠的 条评论
为什么被折叠?



