Jetson TX2(Jetpack4.3)安装opencv(v3.4.2)+部署yolo3的操作

Jetson TX2(Jetpack4.3)安装opencv(v3.4.2)+部署yolo3的操作

重新刷了N次系统,终于成功了,!!!

现在将操作过程记录如下:

 

清除旧版本

首先完全卸载刷机时刷如的自带的opencv旧版本,以便更好地安装opencv3.4.2版本

sudo apt-get purge libopencv*
sudo apt autoremove
sudo apt-get update

安装cmake以及依赖库

sudo apt-get install cmake
sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg-dev libtiff5-dev libswscale-dev

sudo apt-get install libjasper-dev

安装libjasper-dev系统报错,提示:errorE: unable to locate libjasper-dev,所以单独安装。

单独安装仍然出错,按照网上提示及解决办法

sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt update
sudo apt install libjasper1 libjasper-dev

仍然不能解决,后搜索 “tx2 软件源”,找到 https://blog.csdn.net/weixin_40554881/article/details/80865401

按照上述链接替换了清华的源,替换之后,执行

sudo apt-get update

sudo apt-get install libjasper-dev

顺利安装。

安装opencv

下载opencv,这个根据个人需要吧,我因为之前的程序都是基于3.4.2开发的,所以还是选择这个版本,jetpack4.3默认安装了4.1.1版本的opencv.

unzip OpenCV-3.4.2.zip
cd opencv3.4.2.
mkdir build
cd build
cmake ..
sudo make -j4
sudo make install

把opencv的so库加入到环境变量

sudo gedit /etc/ld.so.conf.d/opencv.conf

在弹出文件的末尾加入/usr/local/lib,保存关闭文件。

sudo ldconfig 让配置生效

安装测试

利用以下语句进行安装验证,安装成功的话会输出opencv版本号3.4.2

python -c "import cv2; print(cv2.__version__)"
 

部署YOLOV3

1.CPU模式下

下载安装并编译yolov3源码

git clone https://github.com/pjreddie/darknet yolo3
cd yolo3

打开yolo3下边的makefile文件修改OPENCV=1,并保存。

默认情况下yolo的Makefile文件有个配置OPENCV=0,你需要将它改成 1 ,否则不会启用 opencv,在用yolo调用视频或者相机时会提示:

Demo needs OpenCV for webcam images。

修改参数的方法

sudo gedit  makefile

现在执行命令
make

下载预训练模型权重文件

yolov3.weights也可以通过在csdn上搜索相关资源下载,速度较快,大小为248MB,不要下错了,下载完成后发在yolo3目录下面即可

wget https://pjreddie.com/media/files/yolov3.weights
 

运行代码,检测示例图片

./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
 

GPU模式下

对yolo3文件夹下面的Makefile文件前几行进行修改

sudo gedit Makefile

修改后前几行如下,然后保存退出

GPU=1
CUDNN=1
OPENCV=1
OPENMP=0
DEBUG=0

重新编译

make

修改模型超参数

改为GPU模式后还需要对模型的batch size等超参数进行修改,否则TX2的内存将很快被耗尽,造成系统卡顿的现象。因此修改yolov3/cfg/yolov3.cfg文件,将Training注释掉,改Testing的batch为1,修改后文件的前几行如下所示:

[net]
# Testing
  batch=1
  subdivisions=1
# Training
# batch=64
# subdivisions=16

运行代码,检测示例图片

./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg

调用视频

./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights data/demo.mp4

调用外接摄像头

./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights -c 1

结束运行

ctrl+c

yolov4的安装和使用参考博文:https://bbs.huaweicloud.com/blogs/233255

 

 

 

 

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值