Diffusion Model(扩散模型)是生成模型的一种,作为近两年CV领域一种比较火的模型。它是一种基于扩散的生成模型被提出,其下有类似的想法,包括扩散概率模型(diffusion probabilistic modelsSohl-Dickstein et al., 2015),噪声条件得分网络(NCSNYang & Ermon, 2019),以及去噪扩散概率模型(DDPMHo et al. 2020)。
Diffusion Model(扩散模型)最近两年在图像生成方面真是火的不得了,前有OpenAI的Glide,后有Google刚出的Imagen,直接将DALL-E2从文字到图像的生成王座上拉了下来。其实这些本质上都说明扩散模型在生成任务上的效果可以逐步比肩GANs。
本资源整理了视频扩散模型相关的资源、论文、数据集等,分享给大家。
资源整理自网络,源地址:https://github.com/Xiefan-Guo/Awesome-Visual-Diffusion-Models
目录
内容截图