人脸识别(一)
1.1 干货
废话不多说,直接上代码:
代码量并不多,个人认为注释挺多,还是比较清楚的。代码直接复制拷贝运行可能会报错,在运行此程序前需做一些准备工作:
- 对于Mac系统需要在项目文件下的
Products
文件夹下添加info.plist
文件,为程序赋予打开本地摄像头的权限。否则报错This app has crashed because it attempted to access privacy-sensitive data without a usage description. The app's Info.plist must contain an NSCameraUsageDescription key with a string value explaining to the user how the app uses this data.
; - 有的电脑可能要搜索下载
haarcascade_frontalface_default.xml
,该文档类似一份参考,程序需根据此文档识别图片中的人脸;
//
// main.cpp
// FaceDetect
//
// Created by BogeyDa on 2019/1/1.
// Copyright © 2019 BogeyDa. All rights reserved.
//
#include<opencv2/objdetect/objdetect.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <chrono>
using namespace cv;
using namespace std;
CascadeClassifier faceCascade;
// 将摄像头拍到的图片保存至本地
void save_img(Mat img)
{
// 在保存图片前显示图片
imshow("CamerFaces", img);
// 保存图片至本地
// 获取系统当前时间并转换为字符串,将作为保存图片的名字
auto t = std::chrono::system_clock::to_time_t(std::chrono::system_clock::now());
std::stringstream ss;
ss << std::put_time(std::localtime(&t), "%F %T");
std::string str = ss.str();
// 保存图片至本地,保存路径按个人情况修改
string saveName = "/Users/BogeyDa/Desktop/Results/"+str+".png";
imwrite(saveName,img);
// 等待按键,将循环暂停在这里,否则将会不断循环,保存过多重复图片
waitKey();
}
int main()
{
// 加载xml文档,是一种格式规范,作为识别人脸的参考标准
// 如果加载不成功,报错“Error loading face cascade”
// 加载路径每个人情况不同,一定要找到自己xml文件的路径替换下面的路径
if( !faceCascade.load("/usr/local/Cellar/opencv/3.4.1_3/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml")
){
printf("--(!)Error loading face cascade\n");
return -1;
};
// 定义数据
Mat img, imgGray;
vector<Rect> faces;
// 打开摄像头
VideoCapture capture(0);
// 判断摄像头是否打开
// 若打开则将拍摄的图片保存至img
// 否则打开本地图片,在imread中写入自己想识别的图片路径
if (capture.isOpened())
{
capture >> img;
}
else
{
img=imread("/Users/BogeyDa/Desktop/mask10.jpeg");
}
// 循环读取图片并识别人脸
while(1)
{
// 图片数据img为空进行下一次循环,再读一次图片
if(img.empty())
{
continue;
}
// 判断图片是否灰度图,是则存为imgGray,否则通过cvtColor转为灰度并存入imgGray
if(img.channels() == 3)
{
cvtColor(img, imgGray, CV_RGB2GRAY);
}
else
{
imgGray = img;
}
// 识别人脸
faceCascade.detectMultiScale(imgGray, faces, 1.2, 6, 0, Size(0, 0));
// 若识别出人脸则框出
if(faces.size()>0)
{
for(int i =0; i<faces.size(); i++)
{
rectangle(img, Point(faces[i].x, faces[i].y), Point(faces[i].x + faces[i].width, faces[i].y + faces[i].height), Scalar(0, 255, 0), 1, 8);
}
save_img(img);
}
// 未识别出人脸则在图片标注“Can not detect the face”
if(faces.size()<=0)
{
cout << "There is no face" << endl;
putText(img,"Can not detect the face",Point(500,400),FONT_HERSHEY_SIMPLEX,1,Scalar(0,0,255),4,8);//在图片上写文字
save_img(img);
}
// delay ms 等待按键退出循环
if(waitKey(1) > 0)
{
break;
}
}
return 0;
}
1.2 结果
只要准备工作完成了,代码是一定可以运行的,如下是我的结果展示:
- 成功识别出人脸:
- 当脸被挡住时就识别不出了:
- 在指定文件夹下保存了对应图片:
1.3 下节预告
在《人脸识别(二)》中我会介绍代码编写前的准备工作。