MLP三部曲(MLP-Mixer -> gMLP -> MAXIM)——其一

其一:MLP-Mixer

参考一文教你彻底理解Google MLP-Mixer(附代码) - 月球上的人的文章 - 知乎
https://zhuanlan.zhihu.com/p/372692759

论文链接:https://arxiv.org/abs/2105.01601
先看总体结构:在这里插入图片描述
乍一看和Vit特别像,先把图片分Patch,然后拉平过全连接变成Embedding。(或者类似ConvNeXt,直接用kernel_size=patch_size=stride的卷积实现)。
主要就看中间的Mixer Layer怎么实现的。

为什么叫Mixer?因为作者认为,现在的视觉任务无外乎就是混合特征
比如Conv卷积层:
在这里插入图片描述
在做卷积的时候实际上就是把一个卷积核所对应的这一块区域做混合(加权相加),卷积核就相当于是混合器。卷积可以分解为Depth-wise卷积和Point-wise卷积,相当于是两个维度的混合,借用这个思想,诞生了转置+MLP的思路:

在这里插入图片描述
注意,这里使用MLP是共享权重的,因此图中只有MLP1,MLP2,这样的目的是减少参数量,或者可以把MLP看作一个卷积核,每次使用1个卷积核。

MLP1混合的是同一channel里面的所有Patches的信息,MLP2混合的是一个Patch里面的所有Channel的信息
为什么?回顾一下全连接的作法:
m个数字经过全连接(矩阵乘法)后输出k个数字,每个数字都是这m个数字加权得到的结果,相当于把这m个数字通过不同方法混合。
如果是(n, embeddings)的矩阵呢?
经过全连接后生成(n, k)的矩阵,还是在最后一维做混合。就图中而言,相当于是行内混合
在这里插入图片描述
从Pyroch文档我们可以看到,就是做了矩阵乘法。
首先来看,一个(m, )向量通过fc层变成(k, )实际做了什么:
(m,)x(m, k)=>(k, )矩阵乘法
也就是说:一个向量乘一个矩阵就是FC层
对于(n, embeddings),过全连接就是乘一个矩阵
也就是说:使用nn.linear是天然的所有embedding共享同一套weight,想要使用不同的weight得有一个3维的权重矩阵,可能是改F.linear的参数,不过这里不再深究,按Pytorch的nn.linear就是共享一套权重的:
在这里插入图片描述

思考

首先是Patch,就是图像的一块,拉平后变成1维,再通过全连接做维度变换,实际上就是过Kernel_size=Patch_size=Stride的卷积,每个Patch内的信息被融合后变成一个向量。
后面的转置前后的MLP虽然可以类比Depth-wise和Point-wise,但并不能完全等效
要把MLP看作卷积,即把它的权重矩阵(input_dim, output_dim)看作卷积核,即output_dim个维度为input_dim个卷积核,即其卷积核始终是1维的。而Point-wise卷积的卷积核是3维,Depth-wise卷积的卷积核是2维,是变化的。

对于转置前,输入(Patches, Channels),乘上(Channels, output_dim)的矩阵输出,
我们可以把二维想象成3维,或者说是一幅图上就只有Patch_num个像素点:
在这里插入图片描述
第一个阶段,对每个Point做卷积,滑动卷积核对所有Point做卷积,就跟Point-wise卷积很类似
第二个阶段,对同一Channel的所有Point做卷积,问题是还是滑动窗口,所有Channel使用相同的卷积核。。
CNN中的Depth-wise是不同Channel使用不同的卷积核。
应该说,Depth-wise卷积就不能用矩阵乘法实现,应该用矩阵点乘再以横轴为单位求和得到,另外,
如果直接用和原图大小的矩阵,相当于是和原图大小的卷积核
由于Depth-wise卷积很难用矩阵乘法实现,这也是为什么在CNN里它速度慢的原因

参数量对比

vit的参数量与精度:
在这里插入图片描述
Mixer参数量:207M
在这里插入图片描述
精度:
在这里插入图片描述
感觉不如Vit。。

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: mlp-mixer是一种全MLP架构,用于视觉任务。它使用多层感知机(MLP)来代替传统的卷积神经网络(CNN)来处理图像。这种架构的优点是可以更好地处理不同尺度和方向的特征,同时减少了计算和内存消耗。它在许多视觉任务中表现出色,例如图像分类、目标检测和语义分割。 ### 回答2: mlp-mixer是一种全连接多层感知器(Multi-Layer Perceptron,MLP)网络架构,用于视觉场景的图像分类任务。它是在自然语言处理领域中Transformer的启发下发展起来的。与CNN、ResNet等传统的卷积神经网络架构不同,mlp-mixer主要采用全连接层(FC)和MLP Block。 mlp-mixer架构设计的主要思想是将全局信息和本地信息分离,然后通过一系列由FC和MLP Block组成的混合层进行特征提取。在每个MLP Block中,特征向量会被分成多个部分进行局部特征提取,之后再全局汇聚。这样可以保证局部信息不会在多次卷积操作后丢失,并且全局信息的汇聚也是非常高效的。 另外,mlp-mixer架构中的Layer Norm和MLP Block中的GELU激活函数等技术也是有其特点的。Layer Norm是比Batch Norm更加具有一般性的归一化技术,可以提高模型对小批量数据的扩展性。而GELU激活函数在接近0处光滑,对精度保持了很好的提升。这些技术的运用让mlp-mixer模型具有了更好的稳定性和鲁棒性。 综上所述,mlp-mixer是一个全新的神经网络架构,其与传统的卷积神经网络的不同点在于摆脱了卷积操作,通过全连接层和MLP Block等模块提取图像特征。该模型有很强的泛化性,并且在图像分类任务上取得了不错的效果。它的优点在于良好的可扩展性和可解释性,且训练效果非常稳定。在未来,mlp-mixer模型或许有望在计算机视觉领域中取得更进一步的发展。 ### 回答3: MLP-Mixer是一种全MLP(多层感知器)的架构,可以应用于视觉任务中的图像分类和目标检测等任务。MLP-Mixer在CVPR 2021中被提出并于同年6月被公开发布。 传统的卷积神经网络(CNN)被广泛应用于计算机视觉领域。但是,随着计算机视觉任务的不断发展和增加,如何更好地处理不同类型和规模的数据集,成为了一个挑战。因此,MLP-Mixer尝试解决传统卷积神经网络中一些问题,例如参数共享、池化和批归一化等。 MLP-Mixer的主要思想是将传统的卷积操作替换为由若干密集连接层(全连接层)组成的mixing层。传统的卷积操作只考虑空间上的邻居关系,而mixing层考虑全局视角。mixing层通过对不同通道(channel)的信息进行交互,捕捉不同通道之间的全局相关性,提高了特征提取的效率和性能,同时降低卷积神经网络的复杂性。 此外,MLP-Mixer还引入了多层感知器池化层(MLP Pooling Layer)代替传统的最大池化层(Max Pooling Layer),使神经网络更加灵活和高效。MLP-Mixer考虑到了计算机视觉中不同尺度的特征信息,通过MLP池化层进行特征重组和降维,使得神经网络可以处理多尺度特征信息,提高特征提取的精度和速度。 总的来说,MLP-Mixer是一种全MLP的架构,其独特的mixing层和MLP Pooling层相比传统的卷积神经网络有着更好的性能和可扩展性。未来,MLP-Mixer有望在计算机视觉领域的各种任务中得到广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值