SAR基础知识点学习

最近找到了一本Sarcape教程,努力学习中,做个学习记录。

1. SAR概述

1.1 什么是Radar

Radar是RAdio Detection And Ranging的简写,一个Radar系统主要包括三个功能:

(1)发射微波信号到场景

(2)接收从场景中传回的部分后向散射能量

(3)观测返回的强度(检测)和延时(测距)信号

Radar使用本身的能量源,因此可以进行全天候观测,并且可以透过云层覆盖。这种遥感系统就是主动式遥感系统。

早期的雷达系统是真实孔径雷达(Real Aperture Radar--RAR),由于成像分辨率与雷达天线的长度成正比,要想得到较高分辨率的SAR图像,需要增加天线的物理尺寸,限制其发展和应用,后来逐渐被合成孔径雷达取代。

1.2 什么是SAR

SAR是Synthetic Aperture Radar的简写,中文名称为:合成孔径雷达。用一个小天线作为单个辐射单元,将此单元沿一直线不断移动,在不同位置上接收同一地物的回波信号并进行相关解调压缩处理的侧视雷达。可以获取高分辨率的地球表面图像,是目前广泛使用的雷达系统。垂直轨道方向的维度叫“距离向--range”,近方位向边缘最接近天底顶(在雷达垂直方向下的点)。平行轨道方向的维度叫“方位向--azimuth"。在雷达系统中,分辨率被定义为距离向和方位向

 

 

 

 

2. 几个参数

2.1 距离分辨率(Range)

侧视方向上的分辨率称为距离分辨率

2.2 方位分辨率(Azimuth)

沿航线方向上的分辨率,也称沿迹分辨率

2.3 波长(Wavelength)

雷达遥感使用的微波部分的电磁频谱,频率从0.3GHz至300GHz,波长方面,从1米到1毫米。

常用的波长如下:

(1) P-band=~65cm AIRSAR

(2) L-band=~23cm JERS-1 SAR,ALOS PALSAR

(3) S-band=~10cm Almaz-1

(4) C-band=~5cm ERS-1/2 SAR,RADARSAT-1/2,ENVISAT ASAR,RISAT-1

(5) X-band=~3cm TerraSAR-X-1,COSMO-SkyMed

(6) K-band=~1.2cm 军事领域

波长越长穿透能力就越强,如波长大于2cm的雷达系统不会受到云的影响。如下为几个雷达频率的应用:

(1) 冰雪识别,小型特征,使用X-band

(2) 地质制图,大型特征,使用L-band

(3) 叶面渗透,最好使用低频率,如P-band

(4) 一般情况,C-band是折中波段

 

2.4 极化(Polarization)

极化指的是雷达波束相对于地球表面的方向。无论哪个波长,雷达信号可以传送水平(H)或者垂直(V)电场矢量,接收水平(H)或者垂直(V)或者两者的返回信号。

返回同极化(HH或者VV)信号的基本物理过程类似准镜面反射,比如平静的水面显示黑色。交叉极化(HV或者VH)一般返回的信号较弱,常受不同反射源影响,如粗糙表面。

 

2.5 入射角(Incidence Angle)

入射角也叫视角,入射角是雷达波束与垂直表面直线之间的夹角,(如下图中的theta角,Look angle)。微波与表面的相互作用是非常复杂的,不同的角度区域会产生不同的反射。低入射角通常返回较强的信号,随着入射角的增加,返回信号逐渐减弱。

根据雷达距离地表高度的情况,入射角会随着近距离到远距离的改变而改变,依次影响成像几何。

 

3. 接收模式

SAR数据主要有三种接收模式:Stripmap, ScanSAR, Spotlight。

3.1 条带模式--Stripmap

当运行Stripmap SAR时,雷达天线可以灵活地调整,改变入射角以获取不同的成像宽幅。

最新的SAR系统都具有这种成像模式,包括RADARSAT-1/2,ENVISAT ASAR,ALOS PALSAR, TerraSAR-X-1,COSMO-SkyMed,RISAT-1

 

3.2 扫描模式--ScanSAR

扫描模式是共享多个独立sub-swaths的操作时间,最后获取一个完整的图像覆盖区域。

 

3.3 聚束模式--Spotlight

当执行聚束模式采集数据时,传感器控制天线不停向成像区域发射微波束。它与条带模式的主要区别为:

(1) 在使用相同物理天线是,聚束模式提供更好的方位分辨率

(2) 在可能成像的一个区域内,聚束模式在单通道上提供更多的视角

(3) 聚束模式可以更有效地获取多个小区域

 

4. 散射机制

雷达图像表示的是地面雷达后续散射的估算值,比如高亮区域表示高后向散射。图上高亮要素意味着很大部分的雷达能量反射回雷达系统中。

对于特定波长,一个目标区域的后向散射会受到很多条件的影响,如散射体的物理大小,目标的导电特性,水分含量等。主要可分为5种散射:表面和体散射,双回波(Double Bounce),组合散射,渗透散射和介电属性散射。

(1) 表面和体散射

粗糙的表面能得到更高的后向散射,平整表面在雷达图像上经常表现暗区域。

 

在大多数波长范围内的雷达系统,植被表现中规中矩。

(2) 双回波(Double Bounce)

 

(3) 组合散射

一般发生在低频SAR系统(如L,P波段),包括表面,体散射,双回波等。

 

 

(4) 渗透散射

根据极化方式和波长情况,微波可以透入植被,裸土(干雪或沙地)。一般情况,波长越长,渗透能力越强。交叉极化(VH/HV)相比同极化(HH/VV)的渗透能力弱。

 

(5) 介电属性散射

目标的介电属性也影响雷达的后向散射。如金属和水的介电常数很好(80),而大多数其他材料的介电常数相对较低;在干燥条件下,介电常数一般是3-8。这意味着湿润的土壤或植物表面可以产生雷达信号的反射率显著增加。

基于这种现象,SAR系统也可用于检测土壤水分。主要原理是基于干土和湿土的介电属性之间的反差。由于土壤湿润,饱和25-30时,其介电常数变化约2.5,这相当于增加反射能量。因此,从后向散射系数中检测土壤水分是可行的,为了区分土壤粗糙度和湿度之间的影响,常使用特定极化和双频率(C,L波段)的SAR传感器。

5. 斑点

斑点是与噪声类似的影像特征,由雷达或者激光等连贯系统所产生的(注:太阳辐射是不连贯的)。因地物或地物表面对雷达或激光等电磁波后向反射的干扰,斑点在影像上呈现随机分布的特点。

雷达照射时,每个地面目标的后向散射能量都随着相位和照射功率的变化而变化,这些变化表现在影像就是一个个的零散的点,这些零散的点被连贯性的收集起来,被称作随机漫反射(Random Walk),如下图所示。

 

 

 

<think>好的,我现在需要帮用户解决如何在MATLAB中仿真或处理雷达入射波的问题。首先,用户提到了几个引用,其中引用1、2、3都涉及雷达仿真和MATLAB的应用。我需要结合这些资料,给出一个结构清晰的步骤说明,并且生成相关问题。 首先,我应该回顾雷达入射波的基本概念。入射波通常指的是雷达发射的电磁波,遇到目标后反射回来,被接收器接收。仿真入射波需要考虑波形参数、传播环境、目标反射等。接下来,考虑MATLAB中如何实现这些步骤。 根据引用1,仿真需要定义雷达参数,比如频率、天线阵列结构。引用2提到信号处理和仿真工具箱的使用,这可能涉及生成波形、添加噪声等。引用3则提到雷达定位的仿真,可能涉及波束形成或到达角估计。 用户的需求是模拟入射波,可能需要生成特定波形,模拟传播过程,以及处理接收信号。所以步骤可能包括: 1. 设置雷达系统参数,如载频、带宽、脉冲宽度等。 2. 生成发射信号,比如线性调频信号(LFM),这在雷达中常用。 3. 模拟目标反射,考虑距离、RCS(雷达截面积)带来的衰减和时延。 4. 计算入射波的传播,包括多普勒效应(如果目标移动)。 5. 接收信号处理,比如匹配滤波,提取目标信息。 然后,我需要将这些步骤转化为MATLAB代码,例如使用Phased Array System Toolbox,但如果没有这个工具箱,也可以用基本函数实现。例如,生成LFM信号,计算时延,添加噪声等。 同时,需要确保回答符合用户的要求:结构清晰、分步骤、引用相关的参考资料。最后生成相关问题,比如关于信号生成、多普勒处理、噪声影响等。 在编写代码时,要注意变量命名和注释,方便用户理解。例如,先定义参数,生成信号,模拟回波,处理信号,绘图显示结果。可能还需要考虑不同的调制方式,或者不同的目标场景。 最后,检查是否有遗漏的步骤,比如是否要模拟天线阵列,或者干涉测角(如引用1中的相位差计算)。但用户的问题主要是入射波的模拟,可能这部分可以后续扩展,但当前先集中在基本的入射波生成和接收处理。 综上,分步骤解释,给出示例代码,并引用相关文献,最后生成相关问题。</think>在MATLAB中实现雷达入射波的仿真需结合信号建模、传播特性模拟和信号处理技术。以下是分步骤实现方法: --- ### 一、雷达入射波仿真核心步骤 1. **定义雷达系统参数** - 载波频率(如$f_c=24\ \text{GHz}$)、带宽($B=500\ \text{MHz}$) - 脉冲宽度($T_p=10\ \mu\text{s}$)、重复周期($PRT=1\ \text{ms}$) - 天线增益($G=30\ \text{dBi}$)、发射功率($P_t=1\ \text{kW}$) 2. **生成发射信号** 常用线性调频(LFM)信号模拟雷达波形: $$s(t) = \exp\left(j2\pi\left(f_c t + \frac{1}{2}kt^2\right)\right),\ 0 \leq t \leq T_p$$ ```matlab fs = 2*B; % 采样率 t = 0:1/fs:T_p-1/fs; k = B/T_p; % 调频斜率 s_t = exp(1j*2*pi*(f_c*t + 0.5*k*t.^2)); ``` 3. **目标反射建模** - 设置目标距离($R=1000\ \text{m}$)、速度($v=30\ \text{m/s}$) - 计算时延$\tau=2R/c$和多普勒频移$f_d=2v f_c/c$ ```matlab c = 3e8; tau = 2*R/c; fd = 2*v*f_c/c; ``` 4. **生成接收信号** 叠加时延、多普勒和噪声: $$r(t) = \sqrt{\frac{P_r}{P_t}}s(t-\tau)e^{j2\pi f_d t} + n(t)$$ ```matlab pr = pt*(lambda^2*G^2*rcs)/((4*pi)^3*R^4); % 接收功率 r_t = sqrt(pr/pt)*circshift(s_t, fix(tau*fs)).*exp(1j*2*pi*fd*t); r_t = awgn(r_t, snr, 'measured'); % 添加高斯白噪声 ``` --- ### 二、完整仿真示例代码 ```matlab %% 参数设置 f_c = 24e9; B = 500e6; T_p = 10e-6; PRT = 1e-3; fs = 2*B; t = 0:1/fs:T_p-1/fs; k = B/T_p; s_t = exp(1j*2*pi*(f_c*t + 0.5*k*t.^2)); %% 目标参数 R = 1000; v = 30; rcs = 1; c = 3e8; lambda = c/f_c; tau = 2*R/c; fd = 2*v*f_c/c; %% 接收信号生成 pr = (lambda^2 * 10^(30/10) * rcs) / ((4*pi)^3 * R^4); % 功率衰减计算 rx_sig = sqrt(pr) * circshift(s_t, round(tau*fs)) .* exp(1j*2*pi*fd*(0:length(t)-1)/fs); rx_sig = awgn(rx_sig, 20, 'measured'); %% 脉冲压缩处理 match_filter = conj(fliplr(s_t)); compressed = abs(conv(rx_sig, match_filter)); plot(compressed); % 显示距离像 ``` --- ### 三、关键技术说明 1. **波形设计** LFM信号通过脉冲压缩可获得高距离分辨率[^1] 2. **多普勒补偿** 运动目标会导致相位偏移,需采用MTI滤波器或脉冲对消技术[^3] 3. **噪声建模** 使用`awgn()`函数时需准确设置信噪比(SNR),反映实际接收环境 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值