计算图像的Jacobian矩阵

本文介绍了Jacobian矩阵和梯度向量的概念。Jacobian矩阵用于描述多变量函数向量对自变量向量的变化率,而梯度向量是单变量函数的向量形式。在图像处理中,计算图像的Jacobian矩阵相当于求取图像的梯度,有助于提取图像的边缘特征。
摘要由CSDN通过智能技术生成

梯度向量

如果目标函数 f f f单变量,并且 f f f是关于自变量向量 X = ( x 1 , x 2 , … x n ) T X=(x_1,x_2,\dots x_n)^T X=(x1,x2,xn)T的函数,即 f ( X ) f(X) f(X),
此时, f f f对向量 X X X求梯度,得到的结果为一个与 X X X同维度的向量,称之为梯度向量,用 g ( x ) g(x) g(x)表示。
g ( x ) = ∇ f ( X ) = ( ∂ f ∂ x 1 , ∂ f ∂ x 2 , … ∂ f ∂ x n ) T g(x)=\nabla f(X)=(\frac {\partial f}{\partial x_1}, \frac {\partial f}{\partial x_2}, \dots \frac {\partial f}{\partial x_n})^T g(x)=f(X)=(x1f,x2f,<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值