梯度向量
如果目标函数 f f f 为单变量,并且 f f f是关于自变量向量 X = ( x 1 , x 2 , … x n ) T X=(x_1,x_2,\dots x_n)^T X=(x1,x2,…xn)T的函数,即 f ( X ) f(X) f(X),
此时, f f f对向量 X X X求梯度,得到的结果为一个与 X X X同维度的向量,称之为梯度向量,用 g ( x ) g(x) g(x)表示。
g ( x ) = ∇ f ( X ) = ( ∂ f ∂ x 1 , ∂ f ∂ x 2 , … ∂ f ∂ x n ) T g(x)=\nabla f(X)=(\frac {\partial f}{\partial x_1}, \frac {\partial f}{\partial x_2}, \dots \frac {\partial f}{\partial x_n})^T g(x)=∇f(X)=(∂x1∂f,∂x2∂f,…<