【快捷部署】016_Ollama(CPU only版)

本文介绍了如何在CentOS7环境中使用Docker快速部署Ollama应用,包括安装Docker、配置镜像、启动容器和加载大模型。同时提供了入门体验指南和注意事项,如网络带宽要求和GPU支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ITHW016.jpg


📣【快捷部署系列】016期信息

编号选型版本操作系统部署形式部署模式复检时间
016Ollama(CPU only)latestCentOS 7.XDocker单机2024-04-10

注意事项:
1、目前镜像及大模型下载速度尚可,但由于容量较大,所以建议使用100Mbit/s以上的带宽。
2、2个容器镜像大小约为4G左右,大模型采用Gemma:9B,大约4.7G。
3、Ollama启动方式采用CPU only,由于没有GPU,所以运行速度较慢,建议采用16核以上的服务器。
4、为了降低入门体验门槛,所以规避掉了对于硬件GPU的要求,如想“顺滑”体验,还请使用带GPU的基础设施。
5、脚本部署过程,控制台会提示,输入内网IP地址,输入后才会继续执行,切勿一直等待。
6、本文脚本不适用于带GPU的设备,如有需要,请参见官网或关注后续博文。


一、快捷部署

#!/bin/bash
#################################################################################
# 作者:cxy@toctalk@hwy 2024-04-09                                                 
# 功能:自动部署Ollama(Docker方式) 
# 说明:如果已安装了Docker,请注释掉 install_docker,避免重复安装                                                                 
#################################################################################

info(){
  echo -e "\033[34m 【`date '+%Y-%m-%d %H:%M:%S'`\033[0m" "\033[35m$1\033[0m "
}


install_docker(){
#!/bin/bash
info "安装依赖..."
yum -y install gcc
yum -y install gcc-c++

##验证gcc版本
gcc -v


info "安装Docker(指定版本:23.0.6)"
wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo -O/etc/yum.repos.d/docker-ce.repo
##更新yum软件包索引
yum makecache fast

## 安装docker ce cli
# 查看可安装版本:yum list docker-ce --showduplicates | sort -r
yum -y install docker-ce-23.0.6-1.el7 docker-ce-cli-23.0.6-1.el7

info "启动Docker并验证"
systemctl enable docker && systemctl start docker
docker version


## 创建加速器
#cd /etc/docker
#if [ ! -f "$daemon.json" ]; then
#  touch "$daemon.json"
#else
#  rm -rf daemon.json
#  touch "$daemon.json"
#fi
#tee /etc/docker/daemon.json <<-'EOF'
#{
#	"registry-mirrors": ["https://自己的镜像加速器地址"]
#}
#EOF
#systemctl daemon-reload
#systemctl restart docker


info "Docker(23.0.6)安装完毕!"
}





# 安装 Ollama
install_Ollama(){
 info "参考IP地址:"$(hostname -I)

 read -p "请问,您当前服务器的内网IP地址是?:" inner_ip

 inner_ip="${inner_ip:-127.0.0.1}"

 docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama --restart always ollama/ollama
 info "ollama部署完毕,开始下载gemma大模型..."

 docker exec -it ollama ollama run gemma “你好”
 info "gemma大模型加载完成,开始部署webui界面..."

 docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=http://${inner_ip}:11434 -v open-webui:/app/backend/data --name open-webui --restart always ghcr.nju.edu.cn/open-webui/open-webui:main

 eip=$(curl ifconfig.me/ip)

 info "部署完毕,正在启动WEBUI界面,大约5分钟后,请访问:http://${eip}:3000"
}

install_docker
install_Ollama


使用方法:

$ vim install-ollama-centos7.sh
$ chmod +x install-ollama-centos7.sh
$ ./install-ollama-centos7.sh
# 感谢淘客科技提供的实验资源环境

验证:

1、docker ps (能看到2个容器实例正在运行)
2、浏览器访问:http://eip:3000 (需要等待WEBUI启动,并且放通了3000端口的访问规则)

# open-webui启动有些慢,通过日志查看进度
$ docker logs -f open-webui

ollama-控制台.png


二、入门体验

chat界面.png

详细体验操作请观看后续相关视频


由于是入门系列,所以仅列举了简单的体验场景。
更多信息可访问官网:https://ollama.com
更多的模型:https://ollama.com/library
open-webui:https://github.com/open-webui/open-webui
当然,您也可以关注我,关注后续相关博文。



往期精彩内容推荐

云原生:5分钟了解一下Kubernetes是什么
【快捷部署】015_Minio(latest)
【快捷部署】014_elasticsearch(7.6)
【快捷部署】011_PostgreSQL(16)
【快捷部署】010_MySQL(5.7.27)
【快捷部署】009_Redis(6.2.14)
「快速部署」第一期清单

<think>好的,用户想要了解DeepSeek R1模型源码部署Ollama部署的区别。首先我需要明确这两个部署方式各自的特点和适用场景。 首先,我需要回想一下DeepSeek R1的相关信息。可能它是一个特定公司或团队开发的语言模型,源码部署意味着用户需要从源代码开始构建和配置环境。这可能包括下载代码库、安装依赖项、配置参数、处理硬件兼容性等问题。对于源码部署,用户通常需要有一定的技术背景,能够处理可能出现的编译错误或依赖冲突。另外,源码部署可能更灵活,允许用户自定义模型参数或调整架构,适合需要深度定制的情况。 然后是Ollama,这是一个我比较熟悉的工具,它主要用于本地运行大型语言模型,简化了部署流程。Ollama通常是预编译的,用户只需几条命令就能下载和运行模型,无需处理复杂的依赖关系或配置。它可能支持跨平台,自动处理GPU加速,适合希望快速上手、专注于应用开发的用户。但灵活性可能不如源码部署,用户受限于Ollama提供的功能和接口。 接下来,我需要比较两者的区别。可能从部署流程、技术要求、灵活性、适用场景等方面展开。比如源码部署步骤多,技术要求高,但灵活;Ollama一键部署,简单快捷,但定制性差。同时,资源管理方面,Ollama可能优化得更好,自动利用硬件加速,而源码部署可能需要用户手动配置CUDA、并行处理等。 还要考虑用户的实际需求。如果用户是研究人员或开发者,需要修改模型结构或训练方式,源码部署更合适。如果是普通用户或想快速集成模型功能,Ollama更适合。此外,维护和更新方面,Ollama可能自动更新模型本,而源码部署需要用户自己跟进代码库的更新。 需要确认是否有遗漏的方面,比如安全性、社区支持、文档完善程度等。源码部署可能依赖项目方的文档和支持,而Ollama作为成熟工具可能有更完善的社区和问题解决方案。 最后,组织这些点,用中文清晰、分点回答,确保用户能理解两者的区别和适用情况。避免使用专业术语过多,保持口语化,结构层次分明。</think>DeepSeek R1模型源码部署Ollama部署的核心区别主要体现在**技术门槛、灵活性和使用场景**上,具体差异如下: --- ### 一、部署方式对比 | **维度** | **DeepSeek R1源码部署** | **Ollama部署** | |-------------------|---------------------------------------|-------------------------------------| | **技术门槛** | 需熟悉Python/PyTorch,手动处理依赖和环境 | 一键命令完成,无需编程基础 | | **流程复杂度** | 需编译代码、配置GPU/CUDA、调试兼容性问题 | 自动下载预编译模型,开箱即用 | | **硬件适配** | 需手动优化GPU/CPU资源分配 | 自动启用GPU加速(如NVIDIA显卡) | --- ### 二、核心区别解析 1. **技术控制权** - **源码部署**: 完全掌握模型架构,可修改底层代码(如调整模型层数、修改注意力机制),适合科研或定制化需求。 *例如:可自行实现混合精度训练或量化压缩。* - **Ollama**: 以“黑盒”形式运行,仅能通过API调用预定义功能,适合快速应用开发。 2. **资源占用** - **源码部署**: 需自行优化内存管理和计算并行化,对显存要求更高(如需手动设置`batch_size`和梯度累积)。 *典型问题:可能遇到OOM(内存溢出)需反复调试。* - **Ollama**: 内置资源优化策略(如动态显存分配),自动平衡计算负载。 3. **生态支持** - **源码部署**: 依赖开源社区文档,需自行解决本冲突(如PyTorch与CUDA本匹配)。 *案例:安装`apex`库时可能需手动编译。* - **Ollama**: 提供统一模型仓库(如直接拉取`deepseek-r1:7b-q4`本),内置依赖隔离机制。 --- ### 三、典型场景建议 - **选源码部署**: ✅ 需要修改模型架构(如添加Adapter模块) ✅ 学术研究需复现训练细节 ✅ 企业级私有化部署(需安全审计代码) - **选Ollama**: ✅ 快速验证模型基础能力 ✅ 个人开发者构建AI应用原型 ✅ 多模型AB测试(支持同时加载多个模型) --- ### 四、实操成本示例 - **源码部署**可能遇到的典型问题: ```bash # 常见报错示例 RuntimeError: CUDA out of memory. # 需手动调整batch_size或使用梯度检查点 ``` - **Ollama**的标准化流程: ```bash ollama run deepseek-r1 # 直接进入交互式对话 ``` 选择时需权衡**开发成本**与**定制需求**,技术团队优先源码部署,个人用户推荐Ollama
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值