系列文章目录
提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
例如:第一章 Python 机器学习入门之pandas的使用
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
提示:这里可以添加本文要记录的大概内容:
从https://github.com/joachimBurket/esp32-opencv的TTGO Demo到想要人脸识别(或者其他检测)在opencv上运行,主要需要实现的就是objdetect库的静态编译。下面一步步把我的实现过程分享一下,由于对C++的不熟悉,中间走了一些弯路,感谢ChatGPT,作为工作小助手来说,实在是表现得不错。
ESP32+OPENCV+FaceDetect
提示:以下是本篇文章正文内容,下面案例可供参考
前提环境:ubuntu20.04
一、修改.sh文件,将objdetect库链接进来
在源文件目录下,找到esp32-opencv-master/esp32s3/scripts/文件夹,打开build_opencv_for_esp32s3.sh。(使用esp32目录下得也是可以的,针对得芯片不同)
# list of modules to compile
OPENCV_MODULES_LIST=core,imgproc,imgcodecs,objdetect,zlib
修改modules_list,将objectect添加进去。zlib好像本身core已经包含了,可以不添加。
之后运行.sh文件,编译完成之后,印象里会提示flann相关的有一个接口不可用,不可用的原因可能是跟GCC及编译器的缘由,错误类型是一些语法方面的警告,存在风险。这里可以可以直接屏蔽相关语句,把错误跳过去。
之后就可以完成静态库的编译,当然这只是第一步。
二、增加loadFromMemory接口
了解了一下C++和python环境下,opencv实现人脸识别的程序代码。可以参考:https://blog.csdn.net/new9232/article/details/127288336
第一步都是要加载用于检测的CascadeClassifier文件(级联分类器)。对于windows、linux、android这些操作系统来说,这是非常简单的,因为本身都有非常完善的文件系统。而ESP32S3本身是不带文件系统的,当然可以在esp32上运行MicroPython系统,但是怎样将opencv集成到上面,如何在上面运行之前实现的功能(屏幕、触摸、摄像头等),都是一些难题。所以还是在现有的框架下想办法。
也是看了load接口的源码收到一些启发。
bool CascadeClassifierImpl::load(const String& filename)
{
oldCascade.release(