UpSampling2D用法

# import tensorflow as tf
from tensorflow.keras.layers import UpSampling2D,Input
import numpy

from tensorflow.keras import Model

x = numpy.array([[1, 2,3], [4, 5,6]])
inputs = Input(shape=(2, 3, 1))
out =UpSampling2D(size=(4, 4))(inputs)
model = Model(inputs, out)
model.summary()
y = model.predict(numpy.reshape(x, (1, 2, 3, 1)))
y = numpy.reshape(y, (8,12))
print('input:')
print(x)
print('output:')
print(y)
upsampling 2d 就是将原矩阵分别沿着原来的数值阵列对应的倍数
input:
[[1 2 3]
 [4 5 6]]
output:
[[1. 1. 1. 1. 2. 2. 2. 2. 3. 3. 3. 3.]
 [1. 1. 1. 1. 2. 2. 2. 2. 3. 3. 3. 3.]
 [1. 1. 1. 1. 2. 2. 2. 2. 3. 3. 3. 3.]
 [1. 1. 1. 1. 2. 2. 2. 2. 3. 3. 3. 3.]
 [4. 4. 4. 4. 5. 5. 5. 5. 6. 6. 6. 6.]
 [4. 4. 4. 4. 5. 5. 5. 5. 6. 6. 6. 6.]
 [4. 4. 4. 4. 5. 5. 5. 5. 6. 6. 6. 6.]
 [4. 4. 4. 4. 5. 5. 5. 5. 6. 6. 6. 6.]]

import numpy as np

from tensorflow.keras.layers import (
    UpSampling2D,
)

x=np.array(range(24)).reshape((1,2,3,4))

print(x.shape)
x1= UpSampling2D((3,4))(x)

print(x1.shape)
(1, 2, 3, 4)
(1, 6, 12, 4)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值