【数据压缩】压缩率-图像熵-保真度

转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/50351562

勿在浮沙筑高台

关于图像压缩上的几个名词解释:

1.平均比特数:对应一张图像上每个像素所采用的平均比特数,L(r_k)为灰度级r_k所使用的比特数,p(r_k)表示对应灰度级的概率;

 

2.压缩率&相对数据冗余:若b和b'是两个不同的比特数,代表着相同信息;即是同一张图像,采用不同的比特数总数去表示;


3.图像的熵:一个具有概率P(E)的随机事件E可被说成是包含I(E)单位的信息;在图像中信息的单位采用比特表示,即log底数底数选择2;定义图像中每种灰度级输出的平均信息为图像的熵;由于定义可知,通过观察图像的直方图就可以计算得到该图像的熵。灰度级k = 0,1,2,3,.....,255;

图像的熵  单位:比特/像素   含义:表达图像中灰度信息所需要的最少比特


例子:下面是某张大小为256×256图像的直方图信息,Code 1 表示灰度信息采用定长8进制表示;Code 2 灰度信息采用变长的二进制表示:

由上面的定义知:

采用编码1方案,L_avg=8比特; 采用编码2方案,L_avg=0.25×2+0.47×1+0.25×3+0.03×3=1.81比特;

采用上述计算公式:压缩率 C = 8/1.81=4.42  ; 编码冗余 R = 0.774  ;图像的熵 H = 1.6614 比特/像素;

 4.保真度

    对图像采用某种算法进行了有损压缩,必然导致信息的丢失,为了评估信息的损失,可以采用均方根误差e_rms、均方信噪比SNR_ms等衡量;

均方根误差:即采用每个图像位置的灰度级的差值去计算;f'表示压缩后的图像,f为原图像;均方根值越小保真度越高;

             

均方信噪比:可以把压缩后的图像f'理解为原图像f和一个噪声信号e的和产生; 即f'=f+e;则图像f'的均方信噪比SNR_ms如下



Reference:

     《Digital Image Processing》, Rafael C. Gonzalez,Richard E. Woods.    

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值