关于arctanx的麦克劳林展开式推导:
先把结论写上:
a
r
c
t
a
n
x
=
x
−
1
3
x
3
+
1
5
x
5
−
⋯
+
(
−
1
)
n
x
2
n
+
1
2
n
+
1
+
⋯
(
−
1
⩽
x
⩽
1
)
=
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
2
n
+
1
(
−
1
⩽
x
⩽
1
)
\begin{aligned} arctanx=&x-\frac{1}{3}x^3+\frac{1}{5}x^5-\cdots+(-1)^{n}\frac{x^{2n+1}}{2n+1}+\cdots &(-1 \leqslant x \leqslant 1)\\ =&\sum_{n=0}^\infty(-1)^{n}\frac{x^{2n+1}}{2n+1}&(-1 \leqslant x \leqslant 1)\\ \end{aligned}
arctanx==x−31x3+51x5−⋯+(−1)n2n+1x2n+1+⋯n=0∑∞(−1)n2n+1x2n+1(−1⩽x⩽1)(−1⩽x⩽1)
关于这个式子,最简洁的证明用到了级数的一些知识;第二种是我自己瞎jb推的,比较繁琐,也不严谨,但是学完了泰勒展开就能推
方法一
思想:先求导然后展开然后积分
摘自教科书!!!!!
求导,再由等比级数展开:
(
a
r
c
t
a
n
x
)
′
=
1
1
+
x
2
=
1
−
x
2
+
x
4
−
⋯
+
(
−
x
2
)
n
+
⋯
(
−
1
<
x
<
1
)
=
∑
n
=
0
∞
(
−
x
2
)
n
(
−
1
<
x
<
1
)
\begin{aligned} (arctanx)'=&\frac{1}{1+x^2}\\ =&1-x^2+x^4-\cdots+(-x^2)^n+\cdots\ \ \ &(-1<x<1)\\ =&\sum_{n=0}^{\infty}(-x^2)^n&(-1<x<1) \end{aligned}
(arctanx)′===1+x211−x2+x4−⋯+(−x2)n+⋯ n=0∑∞(−x2)n(−1<x<1)(−1<x<1)
利用幂级数的逐项可积性可得(左右两边积分):
a
r
c
t
a
n
x
=
∫
0
x
1
1
+
x
2
d
x
=
∫
0
x
[
1
−
x
2
+
x
4
−
⋯
+
(
−
x
2
)
n
+
⋯
]
d
x
(
−
1
<
x
<
1
)
=
x
−
1
3
x
3
+
1
5
x
5
−
⋯
+
(
−
1
)
n
x
2
n
+
1
2
n
+
1
+
⋯
(
−
1
<
x
<
1
)
\begin{aligned} arctanx=&\int_0^x\frac{1}{1+x^2}dx\\ =&\int_0^x[1-x^2+x^4-\cdots+(-x^2)^n+\cdots]dx\ \ \ \ &(-1<x<1)\\ =&x-\frac{1}{3}x^3+\frac{1}{5}x^5-\cdots+(-1)^{n}\frac{x^{2n+1}}{2n+1}+\cdots&(-1<x<1)\\ \end{aligned}
arctanx===∫0x1+x21dx∫0x[1−x2+x4−⋯+(−x2)n+⋯]dx x−31x3+51x5−⋯+(−1)n2n+1x2n+1+⋯(−1<x<1)(−1<x<1)
或者也可以简便的写成这样:
a
r
c
t
a
n
x
=
∫
0
x
1
1
+
x
2
d
x
=
∫
0
x
[
∑
n
=
0
∞
(
−
x
2
)
n
]
d
x
(
−
1
<
x
<
1
)
=
∑
n
=
0
∞
[
∫
0
x
(
−
x
2
)
n
d
x
]
(
−
1
<
x
<
1
)
=
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
2
n
+
1
(
−
1
<
x
<
1
)
\begin{aligned} arctanx=&\int_0^x\frac{1}{1+x^2}dx\\ =&\int_0^x{\bigg[}\sum_{n=0}^{\infty}(-x^2)^n{\bigg]}dx&(-1<x<1)\\ =&\sum_{n=0}^\infty{\bigg[}\int_0^x(-x^2)^ndx{\bigg]}&(-1<x<1)\\ =&\sum_{n=0}^\infty(-1)^{n}\frac{x^{2n+1}}{2n+1}&(-1<x<1)\\ \end{aligned}
arctanx====∫0x1+x21dx∫0x[n=0∑∞(−x2)n]dxn=0∑∞[∫0x(−x2)ndx]n=0∑∞(−1)n2n+1x2n+1(−1<x<1)(−1<x<1)(−1<x<1)
由于
x
=
±
1
x=\pm1
x=±1时,级数
±
∑
n
=
0
∞
(
−
1
)
n
1
2
n
+
1
\pm\sum_{n=0}^\infty(-1)^{n}\frac{1}{2n+1}
±∑n=0∞(−1)n2n+11为交错级数,由Leibniz判别法易知其收敛。再根据幂级数的连续性定理得到
a
r
c
t
a
n
x
=
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
2
n
+
1
(
−
1
⩽
x
⩽
1
)
\begin{aligned} arctanx=\sum_{n=0}^\infty(-1)^{n}\frac{x^{2n+1}}{2n+1}(-1\leqslant x \leqslant 1 ) \end{aligned}
arctanx=n=0∑∞(−1)n2n+1x2n+1(−1⩽x⩽1)
a
r
c
t
a
n
x
arctanx
arctanx的展开式可以用来求
π
\pi
π,不过收敛速度很慢,
取
x
=
1
x=1
x=1得到:
π
4
=
1
−
1
3
+
1
5
−
1
7
+
⋯
\begin{aligned} \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \end{aligned}
4π=1−31+51−71+⋯
注解:没学过等比级数的可以这样理解
1
1
+
x
2
=
1
−
x
2
+
x
4
−
⋯
+
(
−
x
2
)
n
+
⋯
(
−
1
<
x
<
1
)
\begin{aligned} \frac{1}{1+x^2}=1-x^2+x^4-\cdots+(-x^2)^n+\cdots(-1<x<1) \end{aligned}
1+x21=1−x2+x4−⋯+(−x2)n+⋯(−1<x<1)
由等比数列公式推出:
q
≠
1
q\ne1
q=1时,
1
+
q
+
q
2
+
⋯
+
q
n
−
1
=
1
∗
(
1
−
q
n
)
1
−
q
\begin{aligned} 1+q+q^2+\cdots+q^{n-1}=\frac{1*(1-q^n)}{1-q} \end{aligned}
1+q+q2+⋯+qn−1=1−q1∗(1−qn)
当
∣
q
∣
<
1
\vert{q}\vert<1
∣q∣<1时,
lim
n
→
+
∞
q
n
=
0
\begin{aligned} \lim_{n\rightarrow+\infty}q^n=0 \end{aligned}
n→+∞limqn=0
因此等式两边变为:
1
+
q
+
q
2
+
⋯
+
q
n
−
1
+
⋯
=
1
1
−
q
(
∣
q
∣
<
1
)
\begin{aligned} 1+q+q^2+\cdots+q^{n-1}+\cdots=\frac{1}{1-q}\ \ \ (\vert{q}\vert<1) \end{aligned}
1+q+q2+⋯+qn−1+⋯=1−q1 (∣q∣<1)
然后把
q
=
(
−
x
2
)
q=(-x^2)
q=(−x2)代入即可。
方法二
上一个方法很精辟了,但是我还是写下我初学时的脑洞吧……
思路在于,麦克劳林展开式需要求在0这点的n阶导数,那我们就求呗。注意先算n阶导数的表达式然后把0代入是不行的,不像
e
x
,
s
i
n
x
,
c
o
s
x
e^x,sinx,cosx
ex,sinx,cosx那样有规律,所以采用莱布尼茨公式(就是那个和二项式定理长得很像的)找递推关系:
y
=
a
r
c
t
a
n
x
y
′
=
1
1
+
x
2
(
1
+
x
2
)
y
′
=
1
\begin{aligned} y=arctanx\\ y'=\frac{1}{1+x^2}\\ (1+x^2)y'=1 \end{aligned}
y=arctanxy′=1+x21(1+x2)y′=1
两边用莱布尼茨公式求n-1阶导数
注意到
y
′
(
n
−
1
)
=
y
(
n
)
y'^{(n-1)}=y^{(n)}
y′(n−1)=y(n)
C
n
−
1
0
(
1
+
x
2
)
y
(
n
)
+
C
n
−
1
1
(
2
x
)
y
(
n
−
1
)
+
C
n
−
1
2
(
2
)
y
(
n
−
2
)
=
0
\begin{aligned} C_{n-1}^0(1+x^2)y^{(n)}+C_{n-1}^1(2x)y^{(n-1)}+C_{n-1}^2(2)y^{(n-2)}=0 \end{aligned}
Cn−10(1+x2)y(n)+Cn−11(2x)y(n−1)+Cn−12(2)y(n−2)=0
x
=
0
x=0
x=0代入
y
(
n
)
∣
x
=
0
+
(
n
−
1
)
(
n
−
2
)
y
(
n
−
2
)
∣
x
=
0
=
0
\begin{aligned} y^{(n)}\vert_{x=0}+(n-1)(n-2)y^{(n-2)}\vert_{x=0}=0 \end{aligned}
y(n)∣x=0+(n−1)(n−2)y(n−2)∣x=0=0
即隔一项有递推关系
因为
y
(
0
)
∣
x
=
0
=
a
r
c
t
a
n
0
=
0
y^{(0)}\vert_{x=0}=arctan0=0
y(0)∣x=0=arctan0=0,得所有偶数阶导数为0,考虑奇数
n
=
2
k
−
1
,
k
∈
N
∗
n=2k-1,k\in\Bbb N^*
n=2k−1,k∈N∗
y
(
2
k
−
1
)
∣
x
=
0
=
−
(
2
k
−
2
)
(
2
k
−
3
)
y
(
2
k
−
3
)
∣
x
=
0
=
(
−
1
)
2
(
2
k
−
2
)
(
2
k
−
3
)
(
2
k
−
4
)
(
2
k
−
5
)
y
(
2
k
−
5
)
∣
x
=
0
=
⋯
=
(
−
1
)
k
−
1
(
2
k
−
2
)
(
2
k
−
3
)
⋯
2
⋅
1
⋅
y
(
1
)
∣
x
=
0
=
(
−
1
)
k
−
1
(
2
k
−
2
)
!
\begin{aligned} y^{(2k-1)}\vert_{x=0}=&-(2k-2)(2k-3)y^{(2k-3)}\vert_{x=0}\\ =&(-1)^2(2k-2)(2k-3)(2k-4)(2k-5)y^{(2k-5)}\vert_{x=0}\\ =&\cdots\\ =&(-1)^{k-1}(2k-2)(2k-3)\cdots2\cdot1\cdot y^{(1)}\vert_{x=0}\\ =&(-1)^{k-1}(2k-2)!\\ \end{aligned}
y(2k−1)∣x=0=====−(2k−2)(2k−3)y(2k−3)∣x=0(−1)2(2k−2)(2k−3)(2k−4)(2k−5)y(2k−5)∣x=0⋯(−1)k−1(2k−2)(2k−3)⋯2⋅1⋅y(1)∣x=0(−1)k−1(2k−2)!
然后代入麦克劳林展开式:
y
=
∑
n
=
0
∞
y
(
n
)
∣
x
=
0
n
!
x
n
=
∑
k
=
1
∞
y
(
2
k
−
1
)
∣
x
=
0
(
2
k
−
1
)
!
x
2
k
−
1
=
∑
k
=
1
∞
(
−
1
)
k
−
1
2
k
−
1
x
2
k
−
1
=
x
−
x
3
3
+
x
5
5
−
x
7
7
+
⋯
+
(
−
1
)
n
−
1
x
2
n
−
1
2
n
−
1
+
⋯
\begin{aligned} y=&\sum_{n=0}^\infty\frac{y^{(n)}\vert_{x=0}}{n!}x^n\\ =&\sum_{k=1}^\infty\frac{y^{(2k-1)}\vert_{x=0}}{(2k-1)!}x^{2k-1}\\ =&\sum_{k=1}^\infty\frac{(-1)^{k-1}}{2k-1}x^{2k-1}\\ =&x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots+(-1)^{n-1}\frac{x^{2n-1}}{2n-1}+\cdots \end{aligned}
y====n=0∑∞n!y(n)∣x=0xnk=1∑∞(2k−1)!y(2k−1)∣x=0x2k−1k=1∑∞2k−1(−1)k−1x2k−1x−3x3+5x5−7x7+⋯+(−1)n−12n−1x2n−1+⋯