关于arctanx的麦克劳林展开式推导

关于arctanx的麦克劳林展开式推导:
先把结论写上:
a r c t a n x = x − 1 3 x 3 + 1 5 x 5 − ⋯ + ( − 1 ) n x 2 n + 1 2 n + 1 + ⋯ ( − 1 ⩽ x ⩽ 1 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 ( − 1 ⩽ x ⩽ 1 ) \begin{aligned} arctanx=&x-\frac{1}{3}x^3+\frac{1}{5}x^5-\cdots+(-1)^{n}\frac{x^{2n+1}}{2n+1}+\cdots &(-1 \leqslant x \leqslant 1)\\ =&\sum_{n=0}^\infty(-1)^{n}\frac{x^{2n+1}}{2n+1}&(-1 \leqslant x \leqslant 1)\\ \end{aligned} arctanx==x31x3+51x5+(1)n2n+1x2n+1+n=0(1)n2n+1x2n+1(1x1)(1x1)

关于这个式子,最简洁的证明用到了级数的一些知识;第二种是我自己瞎jb推的,比较繁琐,也不严谨,但是学完了泰勒展开就能推

方法一

思想:先求导然后展开然后积分
摘自教科书!!!!!

求导,再由等比级数展开:
( a r c t a n x ) ′ = 1 1 + x 2 = 1 − x 2 + x 4 − ⋯ + ( − x 2 ) n + ⋯     ( − 1 < x < 1 ) = ∑ n = 0 ∞ ( − x 2 ) n ( − 1 < x < 1 ) \begin{aligned} (arctanx)'=&\frac{1}{1+x^2}\\ =&1-x^2+x^4-\cdots+(-x^2)^n+\cdots\ \ \ &(-1<x<1)\\ =&\sum_{n=0}^{\infty}(-x^2)^n&(-1<x<1) \end{aligned} (arctanx)===1+x211x2+x4+(x2)n+   n=0(x2)n(1<x<1)(1<x<1)
利用幂级数的逐项可积性可得(左右两边积分):
a r c t a n x = ∫ 0 x 1 1 + x 2 d x = ∫ 0 x [ 1 − x 2 + x 4 − ⋯ + ( − x 2 ) n + ⋯   ] d x      ( − 1 < x < 1 ) = x − 1 3 x 3 + 1 5 x 5 − ⋯ + ( − 1 ) n x 2 n + 1 2 n + 1 + ⋯ ( − 1 < x < 1 ) \begin{aligned} arctanx=&\int_0^x\frac{1}{1+x^2}dx\\ =&\int_0^x[1-x^2+x^4-\cdots+(-x^2)^n+\cdots]dx\ \ \ \ &(-1<x<1)\\ =&x-\frac{1}{3}x^3+\frac{1}{5}x^5-\cdots+(-1)^{n}\frac{x^{2n+1}}{2n+1}+\cdots&(-1<x<1)\\ \end{aligned} arctanx===0x1+x21dx0x[1x2+x4+(x2)n+]dx    x31x3+51x5+(1)n2n+1x2n+1+(1<x<1)(1<x<1)
或者也可以简便的写成这样:
a r c t a n x = ∫ 0 x 1 1 + x 2 d x = ∫ 0 x [ ∑ n = 0 ∞ ( − x 2 ) n ] d x ( − 1 < x < 1 ) = ∑ n = 0 ∞ [ ∫ 0 x ( − x 2 ) n d x ] ( − 1 < x < 1 ) = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 ( − 1 < x < 1 ) \begin{aligned} arctanx=&\int_0^x\frac{1}{1+x^2}dx\\ =&\int_0^x{\bigg[}\sum_{n=0}^{\infty}(-x^2)^n{\bigg]}dx&(-1<x<1)\\ =&\sum_{n=0}^\infty{\bigg[}\int_0^x(-x^2)^ndx{\bigg]}&(-1<x<1)\\ =&\sum_{n=0}^\infty(-1)^{n}\frac{x^{2n+1}}{2n+1}&(-1<x<1)\\ \end{aligned} arctanx====0x1+x21dx0x[n=0(x2)n]dxn=0[0x(x2)ndx]n=0(1)n2n+1x2n+1(1<x<1)(1<x<1)(1<x<1)

由于 x = ± 1 x=\pm1 x=±1时,级数 ± ∑ n = 0 ∞ ( − 1 ) n 1 2 n + 1 \pm\sum_{n=0}^\infty(-1)^{n}\frac{1}{2n+1} ±n=0(1)n2n+11为交错级数,由Leibniz判别法易知其收敛。再根据幂级数的连续性定理得到
a r c t a n x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 ( − 1 ⩽ x ⩽ 1 ) \begin{aligned} arctanx=\sum_{n=0}^\infty(-1)^{n}\frac{x^{2n+1}}{2n+1}(-1\leqslant x \leqslant 1 ) \end{aligned} arctanx=n=0(1)n2n+1x2n+1(1x1)

a r c t a n x arctanx arctanx的展开式可以用来求 π \pi π,不过收敛速度很慢,
x = 1 x=1 x=1得到:
π 4 = 1 − 1 3 + 1 5 − 1 7 + ⋯ \begin{aligned} \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \end{aligned} 4π=131+5171+




注解:没学过等比级数的可以这样理解
1 1 + x 2 = 1 − x 2 + x 4 − ⋯ + ( − x 2 ) n + ⋯ ( − 1 < x < 1 ) \begin{aligned} \frac{1}{1+x^2}=1-x^2+x^4-\cdots+(-x^2)^n+\cdots(-1<x<1) \end{aligned} 1+x21=1x2+x4+(x2)n+(1<x<1)
由等比数列公式推出:
q ≠ 1 q\ne1 q=1时,
1 + q + q 2 + ⋯ + q n − 1 = 1 ∗ ( 1 − q n ) 1 − q \begin{aligned} 1+q+q^2+\cdots+q^{n-1}=\frac{1*(1-q^n)}{1-q} \end{aligned} 1+q+q2++qn1=1q1(1qn)
∣ q ∣ < 1 \vert{q}\vert<1 q<1时,
lim ⁡ n → + ∞ q n = 0 \begin{aligned} \lim_{n\rightarrow+\infty}q^n=0 \end{aligned} n+limqn=0
因此等式两边变为:
1 + q + q 2 + ⋯ + q n − 1 + ⋯ = 1 1 − q     ( ∣ q ∣ < 1 ) \begin{aligned} 1+q+q^2+\cdots+q^{n-1}+\cdots=\frac{1}{1-q}\ \ \ (\vert{q}\vert<1) \end{aligned} 1+q+q2++qn1+=1q1   (q<1)
然后把 q = ( − x 2 ) q=(-x^2) q=(x2)代入即可。

方法二

上一个方法很精辟了,但是我还是写下我初学时的脑洞吧……
思路在于,麦克劳林展开式需要求在0这点的n阶导数,那我们就求呗。注意先算n阶导数的表达式然后把0代入是不行的,不像 e x , s i n x , c o s x e^x,sinx,cosx ex,sinx,cosx那样有规律,所以采用莱布尼茨公式(就是那个和二项式定理长得很像的)找递推关系:
y = a r c t a n x y ′ = 1 1 + x 2 ( 1 + x 2 ) y ′ = 1 \begin{aligned} y=arctanx\\ y'=\frac{1}{1+x^2}\\ (1+x^2)y'=1 \end{aligned} y=arctanxy=1+x21(1+x2)y=1
两边用莱布尼茨公式求n-1阶导数
注意到 y ′ ( n − 1 ) = y ( n ) y'^{(n-1)}=y^{(n)} y(n1)=y(n)
C n − 1 0 ( 1 + x 2 ) y ( n ) + C n − 1 1 ( 2 x ) y ( n − 1 ) + C n − 1 2 ( 2 ) y ( n − 2 ) = 0 \begin{aligned} C_{n-1}^0(1+x^2)y^{(n)}+C_{n-1}^1(2x)y^{(n-1)}+C_{n-1}^2(2)y^{(n-2)}=0 \end{aligned} Cn10(1+x2)y(n)+Cn11(2x)y(n1)+Cn12(2)y(n2)=0
x = 0 x=0 x=0代入
y ( n ) ∣ x = 0 + ( n − 1 ) ( n − 2 ) y ( n − 2 ) ∣ x = 0 = 0 \begin{aligned} y^{(n)}\vert_{x=0}+(n-1)(n-2)y^{(n-2)}\vert_{x=0}=0 \end{aligned} y(n)x=0+(n1)(n2)y(n2)x=0=0
即隔一项有递推关系
因为 y ( 0 ) ∣ x = 0 = a r c t a n 0 = 0 y^{(0)}\vert_{x=0}=arctan0=0 y(0)x=0=arctan0=0,得所有偶数阶导数为0,考虑奇数 n = 2 k − 1 , k ∈ N ∗ n=2k-1,k\in\Bbb N^* n=2k1,kN
y ( 2 k − 1 ) ∣ x = 0 = − ( 2 k − 2 ) ( 2 k − 3 ) y ( 2 k − 3 ) ∣ x = 0 = ( − 1 ) 2 ( 2 k − 2 ) ( 2 k − 3 ) ( 2 k − 4 ) ( 2 k − 5 ) y ( 2 k − 5 ) ∣ x = 0 = ⋯ = ( − 1 ) k − 1 ( 2 k − 2 ) ( 2 k − 3 ) ⋯ 2 ⋅ 1 ⋅ y ( 1 ) ∣ x = 0 = ( − 1 ) k − 1 ( 2 k − 2 ) ! \begin{aligned} y^{(2k-1)}\vert_{x=0}=&-(2k-2)(2k-3)y^{(2k-3)}\vert_{x=0}\\ =&(-1)^2(2k-2)(2k-3)(2k-4)(2k-5)y^{(2k-5)}\vert_{x=0}\\ =&\cdots\\ =&(-1)^{k-1}(2k-2)(2k-3)\cdots2\cdot1\cdot y^{(1)}\vert_{x=0}\\ =&(-1)^{k-1}(2k-2)!\\ \end{aligned} y(2k1)x=0=====(2k2)(2k3)y(2k3)x=0(1)2(2k2)(2k3)(2k4)(2k5)y(2k5)x=0(1)k1(2k2)(2k3)21y(1)x=0(1)k1(2k2)!
然后代入麦克劳林展开式:
y = ∑ n = 0 ∞ y ( n ) ∣ x = 0 n ! x n = ∑ k = 1 ∞ y ( 2 k − 1 ) ∣ x = 0 ( 2 k − 1 ) ! x 2 k − 1 = ∑ k = 1 ∞ ( − 1 ) k − 1 2 k − 1 x 2 k − 1 = x − x 3 3 + x 5 5 − x 7 7 + ⋯ + ( − 1 ) n − 1 x 2 n − 1 2 n − 1 + ⋯ \begin{aligned} y=&\sum_{n=0}^\infty\frac{y^{(n)}\vert_{x=0}}{n!}x^n\\ =&\sum_{k=1}^\infty\frac{y^{(2k-1)}\vert_{x=0}}{(2k-1)!}x^{2k-1}\\ =&\sum_{k=1}^\infty\frac{(-1)^{k-1}}{2k-1}x^{2k-1}\\ =&x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots+(-1)^{n-1}\frac{x^{2n-1}}{2n-1}+\cdots \end{aligned} y====n=0n!y(n)x=0xnk=1(2k1)!y(2k1)x=0x2k1k=12k1(1)k1x2k1x3x3+5x57x7++(1)n12n1x2n1+

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值