传统的目标检测方法分为4个阶段:图像预处理、目标区域选择、特征提取、分类器分类。
对于一张输入图像首先会对其进行降噪、平滑等预处理工作,然后在给定图像上选择一些目标出现概率较高的候选区域,接着对这些候选区域进行特征值提取,最后使用分类器对提取到的特征值进行分类,得到候选框所属的类别。
1.图像预处理:图像预处理的主要目的是消除与检测目标无关的信息,恢复图像中有用的真实信息,增强有关信息的可检测性并最大限度地简化数据,从而改进特征抽取、图像分割,匹配和识别的可靠性。常用的方法有高斯滤波、均值滤波、图像腐蚀和膨胀、二值化等。
2.目标区域选择:对目标可能出现的位置进行定位。由于目标可能出现在图像中的任何位置,且目标的大小、长宽比例在一开始可能无法确定,因此最原始的方法是采用不同尺寸大小的滑动窗口对全图进行遍历。
3.特征提取:对图形中目标区域的窗口进行提取,常用的图像特征有颜色.特征、纹理特征、形状特征、空间关系特征等。这个阶段是目标检测中最为重要的阶段,因为所提取的特征好坏程度直接影响最后分类结果的准确率。
4.分类器分类:将特征提取的结果表示成向量形式,交给特征分类器进行分类,给出所属分类的概率(这里使用到的分类方法属于有监督学习,因此需要预先对人工标注的特征进行训练)。
传统的目标检测方法主要有两个问题:
1.滑动窗口:基于滑动窗口的区域选择策略没有针对性,时间和空间复杂度高,产生大量无用的特征。
2.特征工程:需要人工对目标区域选择合适的特征,工程时间长,另外,经过特征工程选择的特征不一定能够符合多样性特征,其鲁棒性较差。
传统的目标检测方法
最新推荐文章于 2024-04-01 01:21:20 发布