最简单的电脑上截长图的方法

在需要截取电脑的某个页面时,如果该页面过长,一个屏幕放不下,则需要多次截取进行拼接,很麻烦。

如果电脑装了QQ,则可以直接使用QQ自带的截图工具进行截图,步骤如下。

Step1: 打开QQ,进入某个聊天界面;

Step2:点击屏幕截图(快捷键:Ctrl+Alt+A),锁定需要截取的屏幕;

Step3: 点击下面出现的工具栏中的截长图功能,然后使用鼠标滚轮更新界面。

注:这是最后一步,后面是截图示例,可以忽略。

### Faster R-CNN 网络架构解析 Faster R-CNN 结合了区域提议网络 (Region Proposal Network, RPN) 和 Fast R-CNN 的优点,实现了端到端的目标检测流程[^1]。 #### 主要组成部分 - **输入图像**: 输入为任意尺寸的单张图片 img 形状为 [1, H, W, C], 其中 H、W 表示高度宽度,C 代表颜色通道数量。为了适应不同的输入尺度,Faster R-CNN 对于输入图片大小无严格限定[^3]. - **特征提取器 Backbone**: 使用预训练好的卷积神经网络作为骨干网(Backbone),比如 VGG 或 ResNet 来抽取图像中的高级语义信息。ResNet 中通过引入跳跃连接确保即使在网络加深的情况下也能有效传递梯度并保持性能稳定[^4]. - **区域建议网络(RPN)**: 接收来自 backbone 提取出来的 feature map 并生成一系列候选框 proposals 及其对应的对象得分。这些 proposal 将被用于后续阶段进一步处理。 - **感兴趣区域池化(RoI Pooling)/ RoI Align Layer**: 针对每一个由 RPN 得出的兴趣区,在 feature maps 上截取出相应位置的小块,并调整至统一规格送入全连接层做分类识别与边框精修工作。此过程保证无论原始proposal 多大都能得到相同维度输出供下一层使用. - **分类和回归分支**: 经过 ROI pooling 后的数据会分别进入两个平行支路——一个是用来预测类别概率分布;另一个则是针对每个可能存在的物体实例优化其具体坐标参数即边界框的位置修正。 ```mermaid graph LR; A[Input Image] --> B{Feature Extractor}; B -->|Feature Maps| C[RPN]; C --> D{Proposals & Scores}; E[(ROI Pooling)]-.-> F(Classification); G[Bounding Box Regression]; D -.-> |Selected Proposals|E ; E -->|Fixed Size Features|G; ``` 上述图表展示了 Faster R-CNN 的整体架构,从输入图像到最后获得检测结果的过程。值得注意的是 Mask R-CNN 基于此基础上增加了额外 mask 输出路径专门负责像素级分割任务[^2].
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值