目录
前言
本文发表于期刊IEEE Signal Processing Letters ,发表时间为 2023年 11 月。第一作者张东卫:中共党员,博士,河南科技学院信息工程学院校聘教授。长期从事低可视性图像增强、智慧农业、深度学习等方面的研究。
文献地址:https://ieeexplore.ieee.org/document/10065491
代码地址:https://github.com/Li-Chongyi/PCDE
Abstract-摘要
由于光的吸收和散射,水下采集的图像常常面临严重的质量退化问题。在本文中,我们提出通过分段颜色校正和双重先验优化对比度增强来解决上述问题。首先提出了一种基于最大均值和两个增益因子的逐段颜色校正方法来校正每个颜色通道的偏色。在此基础上,提出了一种基于空间和纹理先验信息的双先验优化对比度增强方法,该方法在HSV颜色空间中对V通道的基本层和细节层进行分解。同时,在不同的层次上采用不同的增强策略来增强水下图像的对比度和纹理细节。在多个基准数据集上的大量对比实验表明,该方法优于11种最先进的方法。此外,该方法对雾天和弱光图像具有较好的泛化能力。
一、Introduction-引言
文章围绕水下图像增强展开,先阐述水下图像因多种因素导致质量下降及现有水下图像增强方法存在的不足,接着介绍了一种名为 PCDE的分段颜色校正和双重先验优化对比度增强的水下图像增强方法及其具体操作,最后强调了该工作在颜色校正以及对比度增强方面的两点贡献。
二、Background-背景
2.1水下成像的重要性与水下图像面临的问题
水下成像在海洋科学考察、水下机器人以及水下物体识别等诸多领域起着重要作用,水下图像是感知和理解水下环境的关键信息载体。然而,由于光的波长依赖型吸收和散射、光照不足以及低端水下成像设备等因素影响,水下图像的颜色和对比度出现了严重的退化情况。例如,光的选择性吸收易造成水下图像出现颜色偏差,光散射则容易致使图像细节模糊、对比度变低。
2.2现有水下图像增强(UIE)方法及局限
目前,解决水下图像质量退化问题的技术主要包括非模型驱动、模型驱动和数据驱动这几类方法。
- 非模型驱动方法:依靠调整图像像素值来提升图像质量,其代表性方法包含基于 Retinex、基于直方图以及基于融合的方法等。例如,Zhang 等人采用最小颜色损失策略校正色偏,并运用自适应对比度增强策略局部提升图像对比度。但这类方法会忽略图像的纹理细节,增强后的图像常出现过饱和现象。
- 模型驱动方法:利用先验信息求解成像模型参数以恢复高可见度图像,其代表性先验包括最小信息损失先验、场景深度先验、统计先验、稀疏先验等。比如,Peng 等人提出了适用于多种图像退化类型的广义暗通道模型,Ding 等人采用全变差正则化进一步细化透射图。不过,这些方法没有充分考虑图像的空间和纹理先验,导致恢复图像的细节锐化不足。
- 数据驱动方法:借助大规模训练数据,利用生成对抗网络(GAN)或图神经网络(GNN)模型的数据驱动方法已成功应用于水下图像增强领域。例如,Song 等人提出了考虑相同水下场景具有相似退化特征的水下图像协同增强网络。同时,强化学习和孪生对抗对比学习也被应用于水下图像增强。然而,高质量训练数据限制了深度学习方法的有效性和鲁棒性。
三、Method-方法
整个流程包含分段颜色校正(PCC)和双重优先优化对比度增强(DPOCE)两部分。
1、在分段颜色校正环节:首先采用最大均值法将每个颜色通道分为两部分。然后,采用两个增益因子的分段颜色校正策略自适应地校正每个颜色通道的偏色。
2、在双重优先优化对比度增强环节:设计了一种双先验优化的对比度增强策略来提高色彩校正图像的质量,其中空间先验被设计为优化和增强图像的基层,纹理先验用于优化和锐化图像的细节层。