【图像增强】Underwater Image Enhancement via Piecewise ColorCorrection and Dual Prior OptimizedContrast

目录

前言

Abstract-摘要

一、Introduction-引言

二、Background-背景

2.1水下成像的重要性与水下图像面临的问题

2.2现有水下图像增强(UIE)方法及局限

三、Method-方法

3.1分段颜色校正(LACC)

3.1.1分段颜色校正-方法

3.1.2分段颜色校正-结果(验证)

3.2双重优先优化对比度增强(DPOCE)

3.2.1图片分解

3.2.2基本层增强

3.2.3细节层增强

3.3图像融合

四、summary-总结


前言

本文发表于期刊IEEE Signal Processing Letters ,发表时间为 2023年 11 月。第一作者张东卫:中共党员,博士,河南科技学院信息工程学院校聘教授。长期从事低可视性图像增强、智慧农业、深度学习等方面的研究。

文献地址:https://ieeexplore.ieee.org/document/10065491

代码地址:https://github.com/Li-Chongyi/PCDE


Abstract-摘要

翻译

由于光的吸收和散射,水下采集的图像常常面临严重的质量退化问题。在本文中,我们提出通过分段颜色校正双重先验优化对比度增强来解决上述问题。首先提出了一种基于最大均值和两个增益因子的逐段颜色校正方法来校正每个颜色通道的偏色。在此基础上,提出了一种基于空间和纹理先验信息的双先验优化对比度增强方法,该方法在HSV颜色空间中对V通道的基本层和细节层进行分解。同时,在不同的层次上采用不同的增强策略来增强水下图像的对比度和纹理细节。在多个基准数据集上的大量对比实验表明,该方法优于11种最先进的方法。此外,该方法对雾天和弱光图像具有较好的泛化能力。


一、Introduction-引言

文章围绕水下图像增强展开,先阐述水下图像因多种因素导致质量下降及现有水下图像增强方法存在的不足,接着介绍了一种名为 PCDE分段颜色校正双重先验优化对比度增强的水下图像增强方法及其具体操作,最后强调了该工作在颜色校正以及对比度增强方面的两点贡献。


二、Background-背景

2.1水下成像的重要性与水下图像面临的问题

水下成像在海洋科学考察、水下机器人以及水下物体识别等诸多领域起着重要作用,水下图像是感知和理解水下环境的关键信息载体。然而,由于光的波长依赖型吸收和散射、光照不足以及低端水下成像设备等因素影响,水下图像的颜色和对比度出现了严重的退化情况。例如,光的选择性吸收易造成水下图像出现颜色偏差,光散射则容易致使图像细节模糊、对比度变低。

2.2现有水下图像增强(UIE)方法及局限

目前,解决水下图像质量退化问题的技术主要包括非模型驱动模型驱动数据驱动这几类方法。

  • 非模型驱动方法依靠调整图像像素值来提升图像质量,其代表性方法包含基于 Retinex、基于直方图以及基于融合的方法等。例如,Zhang 等人采用最小颜色损失策略校正色偏,并运用自适应对比度增强策略局部提升图像对比度。但这类方法会忽略图像的纹理细节,增强后的图像常出现过饱和现象。
  • 模型驱动方法利用先验信息求解成像模型参数以恢复高可见度图像,其代表性先验包括最小信息损失先验、场景深度先验、统计先验、稀疏先验等。比如,Peng 等人提出了适用于多种图像退化类型的广义暗通道模型,Ding 等人采用全变差正则化进一步细化透射图。不过,这些方法没有充分考虑图像的空间和纹理先验,导致恢复图像的细节锐化不足。
  • 数据驱动方法借助大规模训练数据,利用生成对抗网络(GAN)或图神经网络(GNN)模型的数据驱动方法已成功应用于水下图像增强领域。例如,Song 等人提出了考虑相同水下场景具有相似退化特征的水下图像协同增强网络。同时,强化学习和孪生对抗对比学习也被应用于水下图像增强。然而,高质量训练数据限制了深度学习方法的有效性和鲁棒性

三、Method-方法

整个流程包含分段颜色校正(PCC)和双重优先优化对比度增强(DPOCE)两部分。

1、在分段颜色校正环节:首先采用最大均值法将每个颜色通道分为两部分。然后,采用两个增益因子的分段颜色校正策略自适应地校正每个颜色通道的偏色。

2、在双重优先优化对比度增强环节:设计了一种双先验优化的对比度增强策略来提高色彩校正图像的质量,其中空间先验被设计为优化和增强图像的基层,纹理先验用于优化和锐化图像的细节层。

### 回答1: 对于这个问题,我可以告诉你一些相关的内容。这篇论文的目的是通过中间介质传输引导的多彩色空间嵌入来提高水下图像的质量。具体来说,作者提出了一种基于颜色空间的图像增强方法,该方法有效地解决了水下图像中的色偏和雾化问题。通过使用中间介质传输模型,该方法可以通过光学传播分析来补偿颜色漂移。此外,该方法还利用了多彩色空间嵌入来减少嵌入噪声并提高增强后图像的质量。 ### 回答2: 《水下图像增强:基于介质传输引导的多色彩空间嵌入》是一种利用介质传输引导多色彩空间嵌入的水下图像增强方法。 水下环境中的图像受到许多因素的影响,如散射、吸收和颜色失真等,导致图像质量下降。该方法通过介质传输信息来改善水下图像的亮度和对比度,同时减小颜色失真。 首先,该方法利用物理光学模型和水下图像属性来建立水下介质传输模型。通过观察水下图像中像素值的变化,可以估计介质传输函数,从而获得水下图像中的光照分布信息。 然后,该方法采用多色彩空间嵌入技术来对水下图像进行增强。通过将水下图像转换到不同色彩空间,如RGB色彩空间和色度饱和度色彩空间,可以更好地捕捉到图像中的细节和纹理信息。通过将不同色彩空间的信息进行融合,可以提高水下图像的清晰度和质量。 最后,该方法还引入了局部对比度调整和全局增强方法,以进一步改善水下图像的对比度和色彩饱和度。 综上所述,《水下图像增强:基于介质传输引导的多色彩空间嵌入》是一种通过利用介质传输引导多色彩空间嵌入的方法,可以有效改善水下图像的亮度、对比度和颜色失真问题。这种方法在水下摄影、水下探测和水下监控等领域具有广泛的应用前景。 ### 回答3: 《通过介质传输引导的多色彩空间嵌入进行水下图像增强》是一种改进水下图像质量的方法。水下图像通常受到水体中光反射、散射等因素的影响,导致图像模糊、颜色失真等问题。本方法通过引入介质传输来减轻这些影响,并通过多色彩空间嵌入来提高图像质量。 在该方法中,首先通过对图像进行介质传输建模,来恢复出图像中的传输过程。介质传输模型考虑了水体的吸收和散射特性,并利用透射函数对每个像素的传输过程进行建模。通过这种方法,可以减少水体对图像的影响,提高图像的清晰度和细节。 接下来,在嵌入空间中进行多色彩处理,将图像映射到多个色彩空间中进行增强。传统的RGB色彩空间在水下图像增强方面不够充分,因此采用多色彩空间可以更好地保留图像细节和颜色信息。采用多色彩空间,可以充分利用通道信息改善图像质量,更好地还原水下场景。 最后,通过对基准图像和增强图像进行比较来评估算法的性能。实验结果表明,该方法在提高图像对比度、细节和颜色还原等方面取得了显著的改善效果。与传统的水下图像增强方法相比,本方法在图像质量上有了明显的提升。这种方法有望在水下摄影、水下监测等领域中得到广泛应用,提高水下图像的可见性和识别能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值