目录
3.1.1Retinex Decomposition(Retinex分解)
前言
本文是中科大、西安交大、南开大学等发表在ICCV2023的论文,作者包括 Naishan Zheng、Man Zhou、Yanmeng Dong、Xiangyu Rui、Jie Huang、Chongyi Li、Feng Zhao。本文提出一种用于低光图像增强的范式,通过探索定制的可学习先验来提高深度展开范式的透明度。作者利用掩码自动编码器(MAE)的强大特征表示能力定制了基于光照和噪声的 MAE 先验,将基于 MAE 的定制光照先验嵌入 Retinex 分解,并且将基于 MAE 的定制噪声先验消除噪声。
文献地址:https://arxiv.org/abs/2309.01958
代码地址:https://github.com/zheng980629/CUE/tree/master
Abstract-摘要
深度神经网络通过提高图像亮度和消除噪声,在弱光图像增强方面取得了显著的进展。然而,现有的方法大都是启发式地构造端到端映射网络,忽略了图像增强任务的内在先验知识,缺乏透明性和可解释性。虽然已经提出了一些展开的解决方案来缓解这些问题,但它们依赖于传递模糊和隐含先验的邻近算子网络。在这项工作中,我们提出了一个低光图像增强的范例,探索了定制的可学习先验信息的潜力,以提高深度展开范例的透明度。在MAE(Masked Autocoder)强大的特征表示能力的激励下,我们定制了基于MAE的光照和噪声先验,并从两个角度对它们进行了重新开发:1)结构流程:我们将MAE从正常光照图像训练到其光照属性,然后将其嵌入到展开结构的邻近算子设计中; 2)优化流程:我们将MAE从正常光图像训练到其梯度表示,然后将其用作正则化项以抑制模型输出中的噪声。这些设计提高了模型的可解释性和表示能力。在多个弱光图像增强数据集上的实验表明,文中算法优于其它算法.
一、Introduction-引言
在低光条件下,图像可见度受限且含噪如下图所受,影响下游任务,低光图像增强备受关注,现有方法分传统与深度学习两类。传统方法如基于 Retinex 理论虽能分解图像,但手工设计先验在复杂场景表现不佳。深度学习方法虽性能提升,但多构建黑盒网络,缺乏透明度与可解释性,像 URetinexNet 等虽改进但仍有不足。因此,作者提出探索定制可学习先验的潜力,利用 MAE 定制光照和噪声先验,从结构流和优化流重新开发,以提高深度展开范式的透明度和模型性能。
二、Relative Work-相关工作
2.1相关工作分析
- 传统方法包括直方图均衡化(HE)、伽马校正(GC)和 Retinex 理论等。HE 类技术用复杂先验拉伸动态范围,GC 类单独处理像素扩展动态范围,Retinex 类通过先验约束光照和反射率图,但手工先验在复杂场景泛化性差。
- 深度学习方法在低光图像增强上表现出色,但多为经验构建的黑盒网络,缺乏可解释性。一些改进方法如 URetinexNet 等虽有进步,但先验传递仍不明确。
- 受自然语言处理中 BERT 成功的启发,掩码图像建模技术如 MAE被提出将输入图像的大部分区域进行掩码,编码器仅对可见部分进行操作。这种方式迫使模型从有限的可见信息中学习到图像的关键特征,使得模型能够捕捉到图像中更具代表性和判别性的信息,从而提高特征表示能力
如下图所示MAE的网络架构以及模型效果:MAE能从有限可见像素挖掘深度特征,学习图像本质结构与语义,少量数据训练即可获强泛化能力。如在低光图像增强中,可精准捕捉光照与噪声特性构建先验,提升增强效果与模型适应性。
2.2本文贡献
- 提出新范式:通过定制可学习的光照和噪声先验,激活了其在低光图像增强方面的潜力,提出了一种新的深度展开范式,提高了模型的透明度和可解释性。
- 结构流改进:从结构流角度,将基于 MAE 的定制光照先验嵌入到展开架构中,使得光照先验能够在 Retinex 分解过程中发挥作用,改进了展开结构的透明度和可解释性。
- 优化流创新:在优化流方面,把基于 MAE 的定制噪声先验重新开发为正则化项,通过约束梯度表示一致性来消除噪声,增强了模型对噪声的处理能力。
- 实验验证优势:在多个低光图像基准数据集上进行实验,结果表明所提出的范式优于现有方法,并且定制的噪声先验在图像去噪任务中也被证明是有效的。
三、Method-方法
本文提出了定制展开增强器Customized Unfolding Enhancer(CUE)范例,其由结构流和优化流组成,如图所示。在结构流程中,是一个展开Retinex分解步骤嵌入了一个基于MAE的定制照明先验,并提供了一个增强步骤。然后,进入优化流程,包括Retinex分解,增强,以及从基于MAE的定制噪声先验中导出的梯度表示正则化。
3.1 Structure Flow (结构流)
3.1.1Retinex Decomposition(Retinex分解)
经典的Retinex理论假设观察到的图像可以分解为照明和反射分量,同时低光图像也不可避免的会引入噪声
其中I、R、L和N分别表示观察到的图像、反射率、照度和噪声。运算符表示逐元素乘法。
目标是最小化如下表达式
其中ρ1、ρ2和ρ3是正则化项,表示N、L和R上施加的先验,γ、β和ω是权重参数。是一个简单约束噪声稀疏性的一般先验,它不能准确地模拟低光图像中的噪声分布。因此,引入了隐式噪声先验ρ1(N),以进一步估计极端噪声,同时通过引入惩罚函数来去除均衡约束,μ是惩罚参数。
等价的目标函数可以通过迭代地更新L、R和N来求解
(1) L sub-problem
给定迭代k、Rk和Nk时的估计反射率和噪声,L可以更新为:
通过将近端梯度方法应用于Eq.(4),我们可以推导出:
其中,是与先验ρ2对应的最近端梯度算子,α1表示更新步长
基于MAE的光照先验
与光照先验相关的近端梯度算子,通常以黑盒方式构建隐式网络,导致先验原则模糊不清。而本文将预训练的基于 MAE 的光照先验嵌入到
的设计中,在设计中构建一个类似 UNet 的卷积神经网络来替代MAE中的编码器-解码器架构,采用掩码图像建模策略,以经过多样化光照条件(通过伽马变换实现输入图像增强)处理后的正常光照图像的光照图为输入。将光照图划分为规则的不重叠区域,随机采样部分区域并掩码其余区域,同时保持地图整体结构。网络对所有可见和掩码区域进行处理,以重建经双边滤波器滤波后的光照图。预训练后,保留卷积部分输出
。
的详细设计
在预训练之后,我们将其编码器fMAEL合并到proxβ p 2的设计中,如图4所示。具体地,将第(k + 1)次迭代Lk+1馈送到fMAEL中以生成具有照明图的属性的特征表示
基于先验特征,将与定制照明先验集成的照明图L k+1公式化为:
如下图所示随着迭代的过程,可以逐步提取到低光图像的光照特征。
(2) R sub-problem
去掉与R无关的项,得到以下和光照优化类似问题
类似地,方程(8)写为:
其中,proxωρ3是对应于先验ρ3的邻近梯度算子,由两个Conv层以及ReLU激活实现,α2表示更新步长
(3) N sub-problem
方程的解如下,其中Shrink(X,η)= max {|X| − η,0}·sign(X)
3.1.2 Enhancement(增强)
1. 图像分解与准备:在 Retinex 分解后,低光图像Il
和正常光图像In
被分解为各自的光照、反射率和噪声项,即[Ll, Rl, Nl]
和[Ln, Rn, Nn]
(其中Nn
为零)。由于图像没有最优光强,需要灵活的光照调整系统。参照 [60],将低光图像的光照分量Ll
与一个指示值ε
(训练时ε = mean(Ln / Ll)
,推理时由用户指定)结合,作为光照调整网络的输入。
2. 光照调整网络:光照调整网络采用 U - Net 结构,具有三个尺度,分别为 12、24 和 48 通道。其作用是调整光照分量,以改善图像亮度。
3. 反射率恢复网络:低光图像的反射率图Rl
会受到颜色偏差和噪声污染影响,且与光照和噪声分布密切相关。因此,将光照图Ll
、噪声图Nl
与Rl
整合到反射率恢复网络,其中反射率恢复网络结构与光照调整网络相同。
4. 增强图像生成最终的增强图像Ien
通过增强后的光照图Len
和恢复后的反射率图Rre
逐元素相乘得到,即Ien = Len ◦ Rre
。
3.2 Optimization Flow-最优化流
损失函数主要分为三部分
- 基于 MAE 噪声先验的正则化:噪声先验的编码器经预训练具强大梯度表征力。将其重构成正则项,借由约束增强与正常光图像梯度表征一致性抑噪,损失函数为
,如下是基于MAE的图像噪声去除的效果图,随着迭代次数,噪声逐步被抑制。
- Retinex 分解损失函数:分解光照、反射率和噪声是不适定问题,利用成对图像,从多方面构建损失。包括以
最大化反射率相似性即R距离;借
(
)实现光照平滑及(
)(
)保证光照一致性;用
约束重建误差。综合得
。
- 增强步骤损失函数:含光照调整和反射率恢复损失
- 总损失函数:CUE 端到端训练范式总损失函数为,各部分协同优化网络,提升低光图像增强效果及模型性能
。利用LOL数据集训练3000个epoch的结果如下,其中psnr=19.3180,ssim=0.6355达到和论文相近水平。
四 、实验结果
4.1实验对比
在PSNR↑、SSIM↑和NIQE↓方面对LOL和华为数据集进行定量比较。最佳和第二结果分别用粗体和下划线标记。
4.2消融实验
在LOL数据集上具有不同阶段数的建议CUE的PSNR和SSIM分数和LOL数据集上fMAEL和fMAEN消融研究的PSNR和SSIM评分。
4.3实验结果
总结&展望
总结:
1、这篇文章提出的基于先验知识的低光图像增强,增强了模型的透明度和可解释性,这个学习的思路特别值得去学习,有助于理解模型的具体功能。
2、仿照MAE的掩码机制设计了照明先验,和噪声先验,这种方式迫使模型从有限的可见信息中学习到图像的关键特征,使得模型在低光图像增强任务中,即使部分区域被掩码,模型也能从可见区域学习到光照和图像结构等重要特征。
展望
1、模型基于光照先验的模型只是用了传统的cnn没有引入注意力机制也许利用transformer架构能够更好捕获图片的全局特征从而更好的增强图片
2、模型可以嵌入其它的先验知识,比如加入反射率的先验,也可以引入NR方程等,把图片调试到合理的亮度范围。