初识AI Agent——以大模型为核心的智能体

引言

在2018年的开发者大会上,谷歌宣布的一款 AI 助手——Google Duplex,一个通过电话完成实际任务的人工智能系统。它能够进行复杂的对话,并且 完全自主 地完成大部分任务,无需人工参与。当然它也具备自我监控功能,当识别到无法自主完成任务时(例如,安排异常复杂的约会),它会向可以完成任务的人类操作员发出信号 。

例如用户让它预约一个商家,Google Assistant就会通过Duplex致电商家来安排预约,在过程中是助手自行与商家的接线员对话,预约成功后再反馈用户已经完成。在预约餐馆的例子中,商家的人类接线员(因英文不好给沟通带来了困难)出了不少错,但是Duplex依然能够应付。

当时这个信息还是挺火的,而负责美业连锁门店业务系统需求的我,收到了老板的提问:“你们不是在做顾客自助预约的功能么,能不能像谷歌这样做到顾客说一句话,就自动执行预约呢?”这样的功能肯定用户体验很好!

那时我只笑笑不说话——这种AI技术,我们自研的可能性可以说为0;而那时候也还没有现在这些大模型和智能体框架。不是我不想,而是不能。

而随着以GPT大模型为代表的人工智能(AI)2.0时代的技术发展,从深度学习、机器学习、自然语言处理到计算机视觉,AI技术不断突破限制,为众多行业带来了革命性的变革,从提供客户服务的聊天机器人到为医疗保健和制造业创建的复杂机器人。特别是以GPT、Claude、Gemini等大模型的发布,使得这样的智能助手对于小企业、普通人而言也有了触手可及的可能性。

这,就是本文所要探讨的AI Agent(人工智能代理,也称为AI智能体)。

01

AI智能体概述

尽管ChatGPT、Midjourney、Runway、Pika等原生AI应用非常火爆,微软、谷歌、百度、淘宝等大厂在结合LLM的能力更新迭代自己的产品,很多套壳应用也层出不穷,但LLM的潜力可远远不止于用来生成好的文案、图片和视频,或者用来优化学习、体验、搜索等,它可以被定义为一个强大的通用问题求解器——也就是本文所要探讨的AI智能体。

什么是AI Agent

AI Agent 并不是一个新兴的概念,早在多年前就已在人工智能领域有了研究。在《人工智能:现代方法(第4版)》一书中,作者表示:

任何通过传感器(sensor)感知环境(environment)并通过执行器(actuator)作用于该环境的事物都可以被视为智能体(agent)。

从这个概念上而言,围棋机器人AlphaGo、苹果手机助手Siri、天猫精灵智能音箱等,都可以理解是AI Agent。

不过,我想要探讨的是一种更先进的、面向未来的人工智能代理——AI Agent旨在理解、分析和响应人类输入,像人类一样执行任务、做出决策并与环境互动。它们可以是遵循预定义规则的简单系统,也可以是根据经验学习和适应的复杂、自主的实体;可以是基于软件的实体,也可以是物理实体。它们被用于各种领域,包括机器人、游戏、虚拟助理、自动驾驶汽车等。这些智能体可以是反应性的(直接对刺激做出反应)、深思熟虑的(计划和决策),甚至具有学习能力(根据数据和经验调整它们的行为)。

相比起来,智能汽车的自动驾驶(L5级别)、(未来更完美形态的)特斯拉人型机器人Optimus这样的智能应用,会更符合我所说的AI Agent的终极形态。

AI Agent的出现标志着我们向通用人工智能(AGI)迈出了一步。在AGI中,机器将在不同领域模仿人类般的灵活性和无与伦比的熟练度(但是效率上可能远高于人类)。

AI Agent和LLM、RPA的区别

大语言模型和 AI Agent 的区别在于 AI Agent 可以独立思考并做出行动,和 RPA 的区别在于它能够处理未知环境信息:

与植根于固定参数和训练数据的标准自动化过程相比,AI Agent在不确定的环境中蓬勃发展,在未知的领域中自主导航,并处理大量新数据。它们是智能自动化的新面孔。但AI Agent又不仅仅是智能的——它擅长使用电脑,无论是直接浏览互联网、管理应用程序,还是进行金融交易和控制设备,其功能广泛而通用。

但是LLM/LMM的突破和发展,为AI Agent的实现铺平了道路,这也是为什么ChatGPT发布后关于AI Agent的讨论愈发火热。以大模型为驱动的人工智能代理具有以下优势:

  • 语言交互:它们固有的理解和生成语言的能力确保了无缝的用户交互。

  • 决策能力:大型语言模型具有推理和决策的能力,使其擅长解决复杂问题。

  • 灵活的适应性:代理的适应性确保它们可以针对不同的应用进行调整。

  • 协作交互:代理可以与人类或其他代理协作交互,为多方面交互铺平道路。

GPTs本身也可以是智能体,因为它支持“Action”。例如直接浏览网页(使用webpilot插件):

跨软件发送消息:

自动整理信息(例如根据在线客服对话提取出商机线索入库):

AI Agent 可以类比为自动驾驶的 L4 阶段,距离真正实现仍有差距(或者说,目前的表现还不理想):

AI Agent的类型

从工作模式来看,AI智能体可以分为单Agent、多Agent、混合Agent(人机交互Agent)三种类型:

单Agent:这种代理侧重于执行单一任务或一系列相关任务,且不需要与其他智能体进行交互。单个代理可以根据任务执行不同的操作,如需求分析、项目读取、代码生成等。例如手机上的Siri或Google Assistant,你可以要求它设置闹钟、查询天气、播放音乐等,每个请求都是由单个AI代理独立处理的,它根据你的命令执行特定的任务。

图:单代理应用场景的三个层次:任务导向、创新导向、生命周期导向。

多Agent:这种模式侧重于智能体之间的互动(合作或对抗)和信息共享,多个智能体协同工作,相互交流信息,共同完成更复杂的任务或目标。多agent应用场景在软件行业开发、智能生产、企业管理等高度协同的工作中非常有帮助。

图:多代理应用场景的两种交互形式:合作型互动、对抗型互动。

在这里,给大家分享一个我在去年12月份所体验的一个基于LLM的多智能体框架——MetaGPT来帮助理解,详见下方的视频。在它的基础版本中,MetaGPT内部包括产品经理 / 架构师 / 项目经理 / 工程师等多个Agents,用户只需要输入一句话的需求,它就会自己思考并最终输出用户故事、竞品分析、 需求文档、 数据结构 、APIs 、代码文件等(尽管还不完美,但已经让我震撼)。

混合Agent:这种模式中,人工智能系统和人类共同参与决策过程,交互合作完成任务,强调的是人机协作的重要性和互补性。智慧医疗、智慧城市等专业领域可以使用混合智能体来完成复杂的专业工作。以智慧医疗为例,医生和AI系统共同进行病情诊断,AI系统可以快速分析病人的医疗记录、影像资料等,提供初步的诊断建议;而医生则可以基于AI的分析结果和自己的专业知识和经验,做出最终的诊断决定。

图:人机交互场景的的两种范式:Instructor-Executor vs. Equal Partnership

从决策制定和行为方式的角度看,AI智能体可以分为以下类型:

简单反射型Agent:基于“如果-那么”规则直接响应当前的环境状态,不存储任何历史数据或状态。它们的设计简单,反应迅速,但适用范围有限。

例如一个简单的客户线索收集机器人,在抖音有新增意向客户(例如咨询或留资)时,就触发企业微信的通知消息到群里。这类代理适合处理一些规则明确、不需要深度逻辑或历史上下文理解的任务。

基于模型的反射型Agent:拥有环境的内部模型,能够基于对环境的理解和过去的经验做出更复杂的决策。它能够适应环境变化,处理更复杂的任务。

例如智能家居系统中的温度控制器,它不仅能够根据当前的室温调节空调,还能学习用户的偏好,并预测何时需要提前调整温度。

基于目标的Agent 这类决策从根本上不同于前面描述的条件-动作规则,因为它涉及对未来的考虑,包括“如果我这样做会发生什么?”和“这会让我快乐吗?

因为了解环境的现状并不总是足以决定做什么。例如,在一个路口,出租车可以左转、右转或直行。正确的决定取决于出租车要去哪里。换句话说,除了当前状态的描述之外,智能体还需要某种描述理想情况的目标信息,例如设定特定的目的地。

有时,基于目标的动作选择很直接,例如,单个动作能够立刻实现目标的情况。有时会更棘手,例如,智能体为了找到实现目标的方法而不得不考虑很长的复杂序列。路线规划就是很好的例子,它根据目的地、出发地以及路径策略设置,为用户量身设计出行方案,同时可结合实时交通,帮助用户绕开拥堵路段。只要将目的地指定为目标,就可以很容易地更改基于目标的智能体的行为,以到达不同的目的地。

基于效用的Agent: 基于效用的代理旨在最大化效用功能或价值,精心挑选具有最高预期效用的行动,以衡量结果的有利程度。由于这种设计,基于效用的代理擅长于在复杂和不确定的场景中使用,灵活适应各种情况。

在大多数环境中,仅靠目标并不足以产生高质量的行为。例如,许多动作序列都能使出租车到达目的地(从而实现目标),但有些动作序列比其他动作序列更快、更安全、更可靠或更便宜。同样是在“路线规划”中,可能会有“地铁优先”“步行最少”“换成少”“时间短”等不同的选项,这些就是用户期望的效用。

学习型Agent: 你这些代理设计用于在未知环境中运行。他们从自己的经历中学习,并随着时间的推移调整自己的行动。深度学习和神经网络经常用于开发学习代理。

在 DeepMind 的一项研究中,就展示了基于世界模型的通用可扩展的算法 DreamerV3在没有人类数据或主动教育的情况下从零开始在《我的世界》(Minecraft)中收集钻石。演示视频显示它收集的第一颗钻石,发生在 30M 环境步数 / 17 天游戏时间之内。

还有一些其他的分类,尽管没有出现在《人工智能:现代方法》一书中,但也值得一提:

信念-欲望-意图Agent:模拟人类的决策过程,具有对环境的信念(认知)、目标(欲望)和计划(意图),能够进行复杂的推理和规划,以达成其目标。我们在文章开头所提到的Google Duplex就是一个非常好的例子,可以被认为是接近于信念-欲望-意图(B-D-I)模型的AI代理。

  • 信念(Belief):Duplex具有对环境的认知,比如理解用户的需求、知道餐厅的开放时间和预约规则。它能够收集和处理信息,形成对当前环境的理解。

  • 欲望(Desire):它基于用户的指令,有明确的目标或欲望,如为用户预订特定日期和时间的餐厅。

  • 意图(Intention):Duplex制定计划和行动步骤来实现这一目标,比如通过电话与餐厅交流,询问可用时间,确认预约细节。

  • 复杂的推理和规划:在进行电话预约时,Duplex能够根据对方的回答进行即时的推理,做出合适的响应,并根据对话情况调整其行动计划,以实现用户的预约意图。

基于逻辑的Agent:通常基于一系列逻辑规则,通过推理来解决问题,适合需要高度逻辑判断的场景,例如法律咨询聊天机器人,通过分析用户的问题和现有的法律规则库,逻辑推理出最合适的法律建议或解答。

分层的AI Agent:按层组织的代理,高级代理负责协调低级代理。这些级别根据系统的复杂性量身定制,在机器人、制造和运输等不同领域表现出色,擅长无缝协调多个任务和子任务。

xAgent的组成部分和工作机制就可以被理解为分层的AI代理。在分层AI代理体系中,不同层级的代理负责完成不同抽象层次的任务,从高层的任务规划到底层的具体执行,各层次之间相互协作,以实现复杂任务的有效处理。

其中:

🤖 调度器:位于体系结构的最高层,负责动态实例化和分派任务给不同的智能体。它允许我们添加新的智能体和改进智能体的能力。这一层相当于高层决策层,对新的智能体进行整合和调度,确保系统能够灵活适应新任务和环境变化。

🧐 规划器:处于中间层,负责为任务生成和校正计划,它将任务分解为子任务,并为它们生成里程碑,使智能体能够逐步解决任务,桥接了高层的调度决策和底层的执行行动。

🦾 行动者:位于体系结构的最底层,负责采取行动实现目标和完成子任务。行动者利用各种工具来解决子任务,它也可以与人类合作来解决任务。它直接与环境交互,实现具体目标。

02

基本构成和技术原理

AI Agent的基本构成

复旦大学NLP团队在《A Survey on Large Language Model basedAutonomous Agents》一文中总结性地指出,如果基于大语言模型构建AI Agent,其总体框架由大脑、感知和行动三个关键部分组成:

  • 大脑:主要由一个大型语言模型组成,该模型不仅存储知识和记忆,还承担信息处理和决策功能,能够呈现推理和规划过程,以很好地处理未知任务。

  • 感知:感知模块的核心目的是将主体的感知空间从纯文本领域扩展到文本、听觉和视觉模式。

  • 行动:在代理的构建中,行动模块接收大脑模块发送的动作序列,并执行与环境交互的动作。

在感知环境后,人类会对大脑中感知到的信息进行整合、分析和推理,并做出决策。随后,他们利用神经系统控制自己的身体,并进行适应性或创造性的行动,如交谈、躲避障碍或生火。当一个智能体拥有类似大脑的结构,以及知识、记忆、推理、规划、泛化能力和多模式感知能力时,它也有可能对周围环境做出各种类似人类的反应。在智能体的构建过程中,动作模块接收大脑模块发送的动作序列,并执行与环境交互的动作。

对细节感兴趣可进一步查阅原论文:https://arxiv.org/pdf/2309.07864.pdf

从上面的架构中我们可以看到,AI Agent可能涉及的组件非常之多。我们无法一一列举,但可以对其中的一部分稍作探讨:

‍感知:感知是人工智能主体从其环境中接收的感官输入。这些提供了关于代理操作的可观察环境的当前状态的信息。例如,如果人工智能代理是客户服务聊天机器人,感知可以包括:

  • 用户消息

  • 用户配置文件信息

  • 用户位置

  • 聊天历史记录

  • 语言首选项(例如中文简体or英文)

  • 时间和日期

  • 用户首选项

  • 用户情绪识别

Agent Function:智能体体系结构的核心是智能体的Function。它将代理对环境的感知映射到它应该采取的行动。换言之,代理功能允许人工智能根据收集到的信息确定应该采取什么行动。这就是代理的“智能”所在,因为它涉及推理和选择行动来实现其目标。软件Agent和AI tools具有学习元素和性能元素,这意味着当代理执行任务时,代理功能会根据代理的历史和训练数据进行改进。

执行:执行器本质上是代理的“肌肉”,执行Agent功能所做的决策。这些动作可以是一系列广泛的任务,从驾驶自动驾驶汽车到在聊天机器人的屏幕上键入文本。

‍一些常见的执行器包括:

  • 文本响应生成器:该执行器负责生成基于文本的响应并将其发送给用户。它接收聊天机器人基于文本的回复,并通过聊天界面将其发送给用户。

  • 服务集成API:聊天机器人可能需要集成一个系统,如公司的CRM系统,以访问客户数据、创建支持票证或检查订单状态。这些集成涉及作为执行器的API调用,允许聊天机器人与外部系统交互,并根据需要检索或更新信息。

  • 通知和提醒:通知执行器可以向用户的设备发送电子邮件通知、短信或推送通知,提醒他们即将到来的约会、订单状态更改、促销或其他相关更新。这些执行器有助于让用户了解情况并参与其中。

‍知识库:知识库是人工智能代理存储其关于环境的初始知识的地方。这些知识通常是预定义的或在训练期间学习的。它是代理人决策过程的基础。例如,自动驾驶汽车可能有一个包含道路规则信息的知识库,而客户服务的自动代理可以访问有关公司产品的详细信息。

‍反馈:随着时间的推移,反馈对于人工智能代理的改进至关重要。这种反馈可以来自两个来源:评估者或环境本身。评估者可以是人类,也可以是用于评估Agent性能的另一个AI系统。或者,环境可以以由Agent的行动产生的结果的形式提供反馈。这种反馈循环使代理能够适应,从经验中学习,并在未来做出更好的决策。

需要强调的是,根据选择的不同具身方法,智能体能够以软件操作、机器人、自动驾驶汽车等多种形式表现。而并不是只有软件程序层面的Action(例如根据需要决定调用指定的插件/API)。

比如知名AI专家李飞飞团队推出的具身智能框架——VoxPoser,就是将大模型接入机器人,把复杂指令转化成具体行动规划(无需额外数据和训练),让其在模拟和现实世界的各种机器人操作任务中取得了很不错的表现:

而自动驾驶,则是迄今为止我心目中最为高级的具身智能形式了:

AI Agent的工作原理

旨在完成指定目标的典型AI Agent基本遵循以下步骤(但步骤的顺序可能会因智能体设计的不同配置或目标而异):

AI Agent的工作与其他流行的AI解决方案类似,即要求用户输入目标,然后智能体通过参与后台操作的核心语言学习模型来启动其迈向目标的旅程,以返回其第一个输出并展示其对手头任务的理解。

接下来是精心制作任务清单。在既定的目标的驱动下,智能体制定一系列任务,按完成顺序排列优先级。一旦对其计划感到满意,它就会深入研究信息检索。

Agent的功能就像一个实验性的计算机用户,在互联网的广阔领域中导航以收集相关信息。一些高级Agent与其他人工智能模型协作,实现图像生成、计算机视觉功能等专业任务的访问(即Function call和工具使用)。所有收集到的数据都由Agent精心管理,用于将信息传递回用户,并完善其策略以实现更优化的进度。

当每项任务完成时,Agent都会积极寻求外部来源和内部思维过程的反馈,以估计其与最终目标的距离。在实现目标之前,代理会不断迭代,制定新的任务,并寻求更多的数据和反馈,以朝着目标前进。

以AutoGPT为例>>>

AutoGPT是一个基于 GPT-4 的自动化生成内容的AI Agent框架,它最引人注目的地方在于其几乎可以完全独立工作(偏文本性的,例如搜集和整理行业信息、撰写市场研究报告、生成代码等),极少需要人为干预。下面,我们将通过一个简单的过程介绍来说明AutoGPT是如何接收任务、处理信息,并给出解决方案的:

  • 初始化和目标设定:开始使用AutoGPT时,首先是为它设置一个标识(比如名字),并明确它需要完成的任务。这一步骤帮助AutoGPT明确目标方向,为后续的决策和任务执行奠定基础。

  • 数据分析:AutoGPT从你提供的信息开始着手工作,它会深入分析这些数据,识别其中的模式和关键细节。这个过程加深了它对任务的理解,为生成解决方案的提示打下了基础。

  • 生成提示:基于对数据的分析,AutoGPT能够生成用于解决任务的自生成提示。这些提示指导AutoGPT如何有效地达成目标。

  • 自主信息搜集:AutoGPT不仅仅局限于开始时提供的数据,它还会主动在互联网上搜集更多信息,以丰富自己的知识库,从而提高任务处理的深度和准确度。

  • 数据审查和优化:收集到的新信息会被系统仔细审查和评估,以确保所有信息的真实性和有效性。任何误导性或不准确的内容都会被排除,保证决策依据的可靠性。

  • 持续学习和改进:AutoGPT注重从每个任务中学习和自我改进。通过分析执行结果和反馈,系统不断调整和优化,使其在处理后续任务时更加高效和精准。

  • 输出结果:经过一系列的分析、学习和优化后,AutoGPT会提供一个综合了所有可用信息和分析的解决方案。这个输出是对任务的深入理解和全面回应。

03

应用场景与案例

AI Agent的应用

AI Agent已经/可以在不通过的领域/场景中得到应用,例如:

  • 虚拟助理:像Siri、Google Assistant和Alexa这样的虚拟助理就是比较常见的AI Agent例子(只不过它们诞生之初并不是基于LLM,但在未来一定会全面集成)。它们都能感知用户的语音,处理音频,并决定对任何特定询问的最佳回应。

  • 机器人:机器人领域的AI智能体包括生产线上的工业机器人到自动驾驶汽车系统。这些智能体感知多种维度的事物,并将它们糅合在一起进行合理、快速的行动响应。

  • 网络安全:用于网络安全的人工智能代理可以检测恶意软件、网络入侵和DDoS攻击。智能体能感知异常的网络流量等情况,并提醒运维人员注意。

  • 游戏:游戏中的AI Agent通过为非玩家角色增加深度,让玩家在游戏世界中感觉到更大的NPC活力。

当然还有更多的其他例子,例如:提供个性化治疗计划的医疗保健Agent,在家和不在家时调整温度的智能家居监测Agent,以及跟踪天气模式和作物产量并提醒科学家变化的环境监测Agent。

不过,如果结合目前学术界和产业界基于大型语言模型(LLM)开发的AI Agent应用情况,我们可以简单归纳为两种主要类型:

自主智能体: 这类AI Agent专注于复杂流程的自动化。当给定一个目标后,它们可以独立地设计任务流程、执行任务,并在完成后继续生成和优先排序新任务,循环进行直到最终目标达成。这种智能体的特点是需要较高的执行准确度,因此,它们经常依赖外部工具来降低大型模型带来的不确定性,确保任务的顺利完成。

智能体模拟:这类AI Agent旨在创造出更加逼真、可信的模拟智能体,它又可以细分为两个子类:一类是强调情感智能的智能体,旨在模拟人类的情感和情商;另一类是强调交互性的智能体,通常应用于多智能体环境中,能够产生超出设计者预期的场景和能力。对于这类智能体来说,大模型固有的不确定性反而可以转化为优势,增加智能体的多样性和逼真度,使其成为AI生成内容(AIGC)的重要组成部分。

根据中国人民大学高瓴人工智能学院的研究团队在去年8月份的一篇论文,基于LLM的AI智能体领域产品增长情况如下:

我们可以看到有不同领域的智能体纷纷推出,其中很多都火出圈了。下面这张图片展示了更多:

一个更加具体的可应用案例

腾讯前一阵子推出了AppAgent的Demo版本——一种多模态智能代理(Agent)框架,由大型语言模型提供支持,与传统的智能助手如 Siri 不同,AppAgent能够掌握和利用你手机上的任何应用程序来执行复杂的任务,通过模拟人类的点击、滑动、输入等操作与社交媒体、电子邮件、地图、购物和复杂的图像编辑工具等App交互。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值