本地化AI Agent平台搭建教程:从环境配置到智能体开发!

今天分享如何在个人电脑上搭建一个AI智能体平台,可以自定义聊天机器人,设计智能体,编排工作流,知识库,RAG管道等等,还支持本地大模型接入,并对外提供API接口。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

为什么需要智能体

智能体的必要性源于单一AI模型的局限性。无论是GPT还是其他先进的AI模型,它们在处理复杂问题时总会面临边界。当多个智能体协同工作时,不同模型的优势可以相互补充,形成更具灵活性和智能化的系统。智能体不仅封装了提示词和任务,还能通过多个模型编排突破单个模型的局限,通过分工协作共同解决复杂问题。

多个大模型厂商已经开始推出基于智能体的AI助手,能够集成多个模型的优势来提供更具定制化和深度的服务。最近360与国内15家大模型开发商合作搞出一个”复仇者联盟“,推出的「360 AI助手」也是同样的道理,一个打不过GPT,15个一起上!

重点:Agent真正的价值在于——模型编排(也叫智能体设计Agent Design,现在有一个专业岗位叫Agent Designer)

01

开源LLM应用开发平台

AI Agent–Dify

Dify,源自 Define + Modify,意指定义且持续改进你的 AI 应用,它是为你而做的(Do it for you)。

它融入后端服务, 内置构建 LLM 应用所需的关键技术栈,支持数百个模型、Prompt 编排及流程编排、高质量RAG 引擎、Agent 框架,还提供了一套易用的界面和 API。为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上。即使你是非技术人员,也可以快速搭建生产级的生成式 AI 应用。

Dify核心功能比较

1. 工作流: 在画布上自由构建和测试功能强大的 AI 工作流程。

2. 全面的模型支持: 与数百种闭源/开源 LLMs 以及数十种推理提供商和自托管解决方案无缝集成,涵盖 GPT、Llama3 以及Ollama平台。

3. Prompt IDE: 用于制作提示、比较模型性能以及向基于聊天的应用程序添加其他功能的直观界面。

4. RAG 管道: 从文档摄入到检索的所有内容,支持从 PDF、PPT 和其他文档格式中提取文本。

5. Agent 智能体: 可基于 LLM 定义 Agent,并为 Agent 添加自定义工具。Dify 为 AI Agent 提供了50多种内置工具,如谷歌搜索、DALL·E、Stable Diffusion。

6. LLMOps: 随时间监视和分析应用程序日志和性能。

7. 后端即服务: Dify功能带有相应的 API,可以将 Dify 集成到自己的业务应用中。

Dify能做什么

1. 创业:可快速将 AI 应用创意变成现实,已有几十个团队通过 Dify 构建 MVP(最小可用产品)获得投资,或通过 POC(概念验证)赢得了客户的订单。

2. 将 LLM 集成至已有业务:引入 LLM 增强现有应用的能力,接入 Dify 的 RESTful API 从而实现 Prompt 与业务代码的解耦,在 Dify 的管理界面是跟踪数据、成本和用量,持续改进应用效果。

3.作为企业级 LLM 基础设施:部分银行和互联网大厂正将 Dify 部署为企业内的 LLM 网关,加速 GenAI 技术在企业内的推广,并实现中心化的监管。

02

如何部署Dify

1.安装Docker

Docker 是一个小白就能轻松上手的开源容器平台,专为开发、部署和运行应用程序而设计。Docker 提供了一种轻量级的虚拟化方式,使得应用程序能够快速部署且易于管理。

1.1 Docker下载

官网:docker.com/products

支持Mac\Windows\Linux,选择适合的版本。

1.2 Docker安装

一键安装docker。

安装成功后docker的 UI 界面,如下:

2.部署 Dify

2.1 获取Dify源代码

有两种方式,都很简单。

一是通过Git命令行克隆,只需要一条命令自动拉取。

  1. 打开Git bash
  2. 输入命令:

git clone https://github.com/langgenius/dify

二是在GitHub 下载源码,放到指定文件夹即可。

  1. 访问 https://github.com/langgenius/dify
  2. 点击"Code",选择"Download ZIP"

2.2 解压文件

2.3 启动Dify

解压后打开docker文件夹,找到这个文件”docker-compose.yaml“,使用Git Bash打开。

同样也是一条简单命令拉取,很快就完成了。

运行命令:docker compose up -d

然后我们就能在Docker界面看到出项一栏Docker,那Dify就部署成功了。

3.打开Dify,配置账户信息

Dify本地部署完成后,需要从本地网址登录。

本地网址:http://127.0.0.1/apps

配置账户信息

然后就可以正式登录了。

4.Dify界面

主界面介绍

可用大模型管理:

Dify有很多强大的功能等着我们一起探索。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 构建AI代理/智能体的设置与配置 构建AI代理或智能体涉及多个方面,包括但不限于注册功能、定义执行者和调用者的角色。对于特定的应用场景,比如游戏中的黑白玩家博弈,可以采用如下方式来创建和配置这些组件。 为了确保工具能够被正确识别并由相应的代理调用,在`autogen`库中使用了`register_function()`函数来进行必要的登记操作[^1]: ```python from autogen import register_function # 假设player_white, player_black代表两个不同的代理实例, # 而board_proxy则是负责实际执行动作的对象。 for caller in [player_white, player_black]: register_function( get_legal_moves, caller=caller, executor=board_proxy, name="get_legal_moves", description="获取合法移动列表" ) register_function( make_move, caller=caller, executor=board_proxy, name="make_move", description="通过此工具下棋" ) ``` 上述代码片段展示了如何为每个参与者(即白方玩家和黑方玩家)分别注册两种基本的功能——查询可用走法(`get_legal_moves`)以及执行具体行动(`make_move`)。这使得当任一方想要采取行动时,可以通过预先设定好的接口向中央控制器请求许可或是提交指令给对方知晓。 此外,值得注意的是,在更复杂的环境中可能还需要考虑其他因素,例如环境准备、依赖项管理等。以Python项目为例,通常会先克隆远程仓库至本地,并建立独立的工作空间以便于后续开发工作顺利开展;接着激活虚拟环境之后再安装所需的第三方包文件[^3]: ```bash # 创建名为 'rag_env' 的新虚拟环境 python -m venv rag_env # 对于基于Unix的操作系统,启用该虚拟环境 source rag_env/bin/activate # 或者针对Windows平台,则应执行下面这条命令 .\rag_env\Scripts\activate # 根据requirements.txt文档列出的内容批量下载所需软件包 pip install -r requirements.txt ``` 以上步骤有助于维持项目的整洁性和可移植性,同时也便于团队成员之间共享相同的运行条件从而减少潜在冲突的发生几率。 最后但同样重要的一点是,如果计划长期维护和发展此类智能体应用程序的话,那么引入持续集成/持续部署(CI/CD)机制将是不可或缺的一部分。特别是面对机器学习领域内的挑战时,实施CI/CD流程可以帮助自动化整个生命周期内各个阶段的任务处理过程,从最初的源码变更直到最终的产品上线发布均能获得有效支持[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值