1、向量定义:
有方向有大小的量,也称矢量。
a⃗
=
(x,y)
可以理解为从坐标
(0,0)
到坐标
(x,y)
有向线段即
(x−0,y−0)
。
2、向量的大小,即模
计算公式:
|a⃗ |
=
x2+y2−−−−−−√
3、向量的内积(点乘或数量积)
定义:对两个向量执行点乘运算,就是对这两个向量对应位分别相乘然后相加求和,结果是一个数(标量)
a⃗
=
(a1,a2)
,
b⃗
=
(b1,b2)
向量
a⃗
,
b⃗
的点积公式为:
a⃗ ⋅b⃗
=
a1b1+a2b2
3.1、向量的内积几何意义
a⃗ ⋅b⃗
=
|a||b|cosθ
- 几何解释,一个向量在另一个向量上(单位向量)的投影大小,
- 物理解释,一个向量在另一个向量上(单位向量)的投影大小(即所做的功的大小)
- 其它意义,两个向量的相似程度,夹角为零,平行;夹角 90 度,垂直。
- 点 A 到直线的距离 :
过 A 点作直线的垂线交直线于 B 点,直线上任意一点 C (异于 B),
A 点到直线的距离=向量
AB→
点乘直线的单位法向量 = 直线的单位法向量的模乘以
|AB|
再乘以两个向量夹角的余弦值。
4、向量的外积(叉乘或向量积)
过 A 点作直线的垂线交直线于 B 点,直线上任意一点 C (异于 B),
AB→∗AC→ = |AB→||AC→|sinθ
向量 AB→ 叉乘向量 AC→ =向量 AB→ 模乘以向量 AC→ 的模再乘以两个向量夹角的正弦值。
- 几何解释,以这两个向量为两个临边组成平行四边形的面积。