向量(基础,点积,叉积等)

1.1、向量的基本概念

向量又称为矢量(vector),表示既有大小又有方向的量。在物理学中,力,速度,位移等都可以用向量来表示。 

向量通常用一个有向线段表示。

1.2、向量的加减法

向量的加法运算符合平行四边形法则。

设向量a(x1,y1)b(x2,y2),则

a+b =(x1+x2,y1+y2)

a-b = (x1-x2,y1-y2)

 1.3、空间向量的坐标表示

1.4、向量的长度

向量的大小,也就是向量的长度(magnitude),也称为模,是一个标量。

设向量a(x,y),则向量a的长度记为|a|,公式如下,三维向量的公式同理。 

1.5、归一化向量

向量的归一化就是把向量的长度变为1,方向保持不变。公式为:

向量v称为u的归一化(normalization)向量。 

1.6、向量的点积和投影 

向量的点积(dot product)又称为数量积(scalar product)或内积(inner product)。

向量的点积是一个标量,也就是一个数值。

运算法则:
[a1,a2,a3…,an] 点乘 [b1,b2,b3…,bn] = a1b1+a2b2+a3b3…+anbn

几何解释:
点乘的结果描述了两个向量的相似程度,点乘结果越大,两向量越接近。

设向量a,b,向量a和向量b的夹角,0≤θ≤π,则向量的点积公式如下:

设向量a(x1,y1,z1)b(x2,y2,z2),则

a·b=x1*x2+y1*y2+z1*z2

如果a·b=0,则成ab是正交(垂直)的。

 

|OB1| =|b|cosθ ,|OB1| 称为b在向量方向上的投影。

投影向量如下,很容易推导。

 

1.7、向量叉积

向量的叉积(cross product),又称外积(outer product)

设向量a和b的叉积为n,则n与a和b都正交,向量a,b和n构成一个右手坐标系(right-handed coordinate system)

叉积n的长度为:

设向量a(x1,y1,z1)b(x2,y2,z2),则 

a x

a x b垂直于向量a也垂直于向量b,所以a b得到的是向量a与向量b构成的面的法向量

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿尔兹

如果觉得有用就推荐给你的朋友吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值