【对YOLOv8(ultralytics)打印测试结果的调整】(1)使得map值打印显示从0.551变为55.08 (2)打印出FPS

本文介绍了如何修改YOLOv8框架的源代码,包括在detect/val.py中调整mAP显示,以及在verifier.py中添加打印FPS的功能。同时,文章提醒读者注意修改后的打印值仅影响控制台输出,不影响Tensorboard和结果文件。此外,还提供了参考链接用于解决打印效果问题。
摘要由CSDN通过智能技术生成

❗❗❗ 兄弟姐妹们,如果看习惯了运行train.py时打印0.551这种的不超过1的小数点值,一定要把以下操作全部还原哟!

❗❗❗ 不然就会像我一样,当看到打印台那一行行的P、R、mAP50、mAP50-95超过1的值,心慌的不得了!错以为是自己数据集的问题,毁我心情,耽误我好几天不跑代码!

❗❗❗ 不过它只是影响的打印台中的显示值,不影响tensorboard中画曲线的值哈,也不影响result.txt中的值!


1. 最终打印效果

在这里插入图片描述

2. 做两处更改

2.1 修改map显示,在ultralytics-main/ultralytics/yolo/v8/detect/val.py中操作

首先,按下Ctrl+F检索定位到print_results处,然后如下操作:

  1. 如图标号1,将11.3改为11.4
  2. 如图标号2,注释掉源代码,加入以下代码
LOGGER.info(pf % ('all', self.seen, self.nt_per_class.sum(), self.metrics.mean_results()[0] * 100, self.metrics.mean_results()[1] * 100, self.metrics.mean_results()[1] * 100, self.metrics.mean_results()[3] * 100))
  1. 如图标号3,注释掉源代码,加入以下代码
LOGGER.info(pf % (self.names[c], self.seen, self.nt_per_class[c], self.metrics.class_result(i)[0] * 100, self.metrics.class_result(i)[1] * 100, self.metrics.class_result(i)[2] * 100, self.metrics.class_result(i)[3] * 100))

在这里插入图片描述

2.2 打印FPS,在ultralytics-main/ultralytics/yolo/engine/validator.py中操作

首先,按下Ctrl+F检索定位到LOGGER.info('Speed处,然后如下操作:

然后,如图添加以下代码:

speedvalues_list = [round(x, 1) for x in list(self.speed.values())]
print(f'FPS: {round(1000 / sum(speedvalues_list), 2)} 帧/s')

在这里插入图片描述

3. (更新)解决更改后达不到本博客相同效果

在这里插入图片描述

# 参考博客:https://blog.csdn.net/ljlqwer/article/details/129175087
from ultralytics import YOLO

model = YOLO("/opt/data/private/user_LWD/train_result/yolov8s/yolov8s-best.pt")  # 权重地址

results = model.val(data="ultralytics/datasets/RDD.yaml", imgsz=640, split='test', batch=1, conf=0.001, iou=0.5, name='yolov8s-from-ultralytics-main-bs1', optimizer='Adam')  # 参数和训练用到的一样
在使用 YOLOv8 检测器时,你可以通过以下步骤打印结果: 1. 导入所需的库和模块: ```python import cv2 from PIL import Image import numpy as np from models.experimental import attempt_load from utils.general import check_img_size, non_max_suppression, scale_coords from utils.torch_utils import select_device ``` 2. 加载 YOLOv8 模型: ```python weights = 'path/to/weights.pt' # 替换为你的权重文件路径 device = select_device('') # 使用默认设备 model = attempt_load(weights, map_location=device) ``` 3. 定义目标类别: ```python class_names = ['class1', 'class2', 'class3', ...] # 替换为你的目标类别名称列表 ``` 4. 加载图像并进行检测: ```python img_path = 'path/to/image.jpg' # 替换为你的图像文件路径 img = Image.open(img_path) img = np.array(img) # 对图像进行预处理 img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB,HWC to CHW格式转换 img = np.ascontiguousarray(img) # 调整图像尺寸 img = check_img_size(img, s=model.stride.max()) # 将图像转换为Tensor并移至设备 img = torch.from_numpy(img).to(device) img = img.float() # float类型 img /= 255.0 # 像素归一化到0-1范围 # 添加批次维度 img = img.unsqueeze(0) # 模型推理 pred = model(img)[0] # 去除多余边框并缩放坐标 pred = non_max_suppression(pred, conf_thres=0.3, iou_thres=0.45) for det in pred: if len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img.shape[2:]).round() # 打印检测结果 for *xyxy, conf, cls in reversed(det): label = f'{class_names[int(cls)]} {conf:.2f}' print(label, xyxy) ``` 以上代码片段是一个简单示例,你可以根据你的具体需求进行修改和调整。确保你已经安装了相关的库和模块,并且将路径替换为你自己的文件路径。
评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟孟单单

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值