【改进】YOLOv7-tiny使用YOLOX的DecoupledHead,能涨点1~3个(附测试时的报错及解决方案:RuntimeError: Expected all tensors to be )

1 改进方式(YOLOv7应该也适用)

1.0 参考链接

1.0 改进后参数量为13.51M,计算量为54.7GFLOPs

在这里插入图片描述

1.1 在models下面添加一个YOLOXHead.py

# 参考:https://blog.csdn.net/weixin_43694096/article/details/127427578
# 注意:记得打开yolo.py里面的729行代码:self._initialize_biases()

import torch
import torch.nn as nn
from models.common import Conv


import pkg_resources as pkg
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
    current, minimum = (pkg.parse_version(x) for x in (current, minimum))
    result = (current == minimum) if pinned else (current >= minimum)  # bool
    s = f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed'  # string
    if hard:
        assert result, s
    return result


class DecoupledHead(nn.Module):
	#代码是参考啥都会一点的老程大佬的 https://blog.csdn.net/weixin_44119362
    def __init__(self, ch=256, nc=80, width=1.0, anchors=()):
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(anchors)  # number of detection layers 3
        self.na = len(anchors[0]) // 2  # number of anchors 3
        self.merge = Conv(ch, 256 * width, 1, 1)
        self.cls_convs1 = Conv(256 * width, 256 * width, 3, 1, 1)
        self.cls_convs2 = Conv(256 * width, 256 * width, 3, 1, 1)
        self.reg_convs1 = Conv(256 * width, 256 * width, 3, 1, 1)
        self.reg_convs2 = Conv(256 * width, 256 * width, 3, 1, 1)
        self.cls_preds = nn.Conv2d(256 * width, self.nc * self.na, 1)
        self.reg_preds = nn.Conv2d(256 * width, 4 * self.na, 1)
        self.obj_preds = nn.Conv2d(256 * width, 1 * self.na, 1)

    def forward(self, x):
        x = self.merge(x)
        # 分类=3x3conv + 3x3conv + 1x1convpred
        x1 = self.cls_convs1(x)
        x1 = self.cls_convs2(x1)
        x1 = self.cls_preds(x1)
        # 回归=3x3conv(共享) + 3x3conv(共享) + 1x1pred
        x2 = self.reg_convs1(x)
        x2 = self.reg_convs2(x2)
        x21 = self.reg_preds(x2)
        # 置信度=3x3conv(共享)+ 3x3conv(共享) + 1x1pred
        x22 = self.obj_preds(x2)
        out = torch.cat([x21, x22, x1], 1)
        return out


class YOLOXHead(nn.Module):
    stride = None  # strides computed during build
    export = False  # onnx export
    end2end = False
    include_nms = False
    concat = False

    def __init__(self, nc=80, anchors=(), Decoupled=False, ch=()):  # detection layer
        super(YOLOXHead, self).__init__()
        self.decoupled = Decoupled
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        a = torch.tensor(anchors).float().view(self.nl, -1, 2)
        self.register_buffer('anchors', a)  # shape(nl,na,2)
        self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2))  # shape(nl,1,na,1,1,2)
        # self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.m = nn.ModuleList(DecoupledHead(x, nc, 1, anchors) for x in ch)

    def forward(self, x):
        # x = x.copy()  # for profiling
        z = []  # inference output
        self.training |= self.export
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
                y = x[i].sigmoid()
                if not torch.onnx.is_in_onnx_export():
                    y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                else:
                    xy, wh, conf = y.split((2, 2, self.nc + 1), 4)  # y.tensor_split((2, 4, 5), 4)  # torch 1.8.0
                    xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5))  # new xy
                    wh = wh ** 2 * (4 * self.anchor_grid[i].data)  # new wh
                    y = torch.cat((xy, wh, conf), 4)
                z.append(y.view(bs, -1, self.no))

        if self.training:
            out = x
        elif self.end2end:
            out = torch.cat(z, 1)
        elif self.include_nms:
            z = self.convert(z)
            out = (z,)
        elif self.concat:
            out = torch.cat(z, 1)
        else:
            out = (torch.cat(z, 1), x)

        return out

    @staticmethod
    def _make_grid(nx=20, ny=20):
        yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()

    def convert(self, z):
        z = torch.cat(z, 1)
        box = z[:, :, :4]
        conf = z[:, :, 4:5]
        score = z[:, :, 5:]
        score *= conf
        convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]], dtype=torch.float32, device=z.device)
        box @= convert_matrix
        return (box, score)

1.2 在models/yolo.py做如下更改

  1. 添加头文件
from models.YOLOXHead import YOLOXHead
  1. 找到第一个if isinstance(m, Detect)然后改为下面的样子
if isinstance(m, Detect) or isinstance(m, YOLOXHead):
  1. 2里面的代码块里,将self._initialize_biases() # only run once注释掉。2、3两处改动后如下图所示:

在这里插入图片描述
4. 定位到elif m in [Detect, IDetect, IAuxDetect, IBin, IKeypoint然后加上YOLOXHead

在这里插入图片描述
#------------------------以上就是我的改动----------------------------#
#------------------------下面这一个我现在觉得也应该改,改了的话可能测试的时候就不会报错了,因为以往按照博客改头都还有这个地方要改,如果这样改有错的话就不要这一步吧,看文章的朋友们自行选择----------------------------#

  1. 定位到if self.traced:,在下面一行代码的后面加上or isinstance(m, YOLOXHead)

1.3 在cfg/training里添加yolov7-tiny-YOLOXHead.yaml文件

  • 只在最后一行有改动,把IDetect改为了YOLOXHead,还接了一个True参数
# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# yolov7-tiny backbone
backbone:
  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
  [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2  
  
   [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4    
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # ---------------ELAN Backbone-1
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7  ------------ELAN Backbone-1 end
   
   [-1, 1, MP, []],  # 8-P3/8
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # ---------------ELAN Backbone-2
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14  ----------ELAN Backbone-2 end
   
   [-1, 1, MP, []],  # 15-P4/16
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # --------------ELAN Backbone-3
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21  ----------ELAN Backbone-3 end
   
   [-1, 1, MP, []],  # 22-P5/32
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # --------------ELAN Backbone-4
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28  ----------ELAN Backbone-4 end
  ]

# yolov7-tiny head
head:
  [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # ---------------------SPP
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, SP, [5]],
   [-2, 1, SP, [9]],
   [-3, 1, SP, [13]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -7], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 37  -----------------SPP end
  
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # ----------------------ELAN FPN
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 47  -----------------ELAN FPN end
  
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],                            # ---------------------------FPN end---------------
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # ---------------------ELAN PAN-1
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57  -----------------ELAN PAN-1 end
   
   [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 47], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # ---------------------ELAN PAN-2
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 65  -----------------ELAN PAN-2 end
   
   [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 37], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # ---------------------ELAN PAN-3
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 73  -----------------ELAN PAN-3 end
      
   [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

   [[74,75,76], 1, YOLOXHead, [nc, anchors, True]],   # Detect(P3, P4, P5)
  ]

2 测试时可能遇到的报错、解决方案

2.1 报错

调用test.py进行测试时,可能会报错:RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

在这里插入图片描述

2.2 解决方案

  • Debug发现在test.py的如下位置出错。这行代码不知道是为了干啥,好像是为了生成追踪模型,但是对我没用,反而还造成测试时出错,因此直接将它注释掉了,注释掉之后就能正常测试出结果了
  • 尝试了其他权重的预测结果,精度map50等完全没有差异,所以放心注释掉吧
  • 但是好像会影响FPS,traced之后的模型FPS会快一点
  • 但是建议测试完YOLOXHead结果之后,还是把下面两行代码重新打开,尽量保持源码的原貌,以免后续测试其他改进模型时出岔子
        if trace:
            model = TracedModel(model, device, imgsz)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟孟单单

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值