时空图卷积网络:用于交通预测的深度学习框架
及时准确的交通预测对城市交通控制和引导至关重要。由于交通流的高度非线性和复杂性,传统的方法不能满足中长期预测任务的要求,往往忽略了空间和时间的相关性。本文提出了一种新的深度学习框架——时空图卷积网络(spatial - temporal Graph Convolutional Networks, STGCN)来解决交通域的时间序列预测问题。我们不使用正则卷积和递归单元,而是在图上表达问题,并建立具有完整卷积结构的模型,这使训练速度更快,参数更少。实验表明,我们的模型STGCN通过对多尺度交通网络建模,有效地捕获了综合的时空相关性,并始终优于各种真实世界交通数据集的最先进的基线。
1 Introduction
交通在每个人的日常生活中起着至关重要的作用。根据2015年的一项调查,美国司机平均每天在方向盘后面花费48分钟在这种情况下,准确实时的交通状况预测对道路使用者、私营部门和政府来说至关重要。广泛使用的交通服务,如流量控制、路线规划和导航,也在很大程度上依赖于高质量的交通状况评估。总体而言,多尺度交通预测是城市交通控制与引导的前提和基础,也是智能交通系统的主要功能之一。在交通研究中,通常选择交通流的基本变量,即速度、流量和密度作为监测当前交通状况和的指标预测未来。根据预测的长度,交通预测一般分为两个尺度:短期(5 ~ 30分钟)、中期和长期(30分钟以上)。大多数流行的统计方法(例如,线性回归)能够在短区间预测中表现良好。然而,由于交通流的不确定性和复杂性,这些方法对于相对长期的预测效果较差。
以往关于中长期交通预测的研究大致可以分为两大类:动态建模和数据驱动方法。动力学建模使用数学工具(如微分方程)和物理知识,通过计算仿真来制定交通问题[Vlahogianni, 2015]。为了达到稳态,仿真过程不仅需要复杂的系统编程,而且需要消耗大量的计算能力。模型中不切实际的假设和简化也会降低预测精度。因此,随着交通数据采集和存储技术的快速发展,大量的研究人员开始将注意力转向数据驱动的方法。
经典的统计模型和机器学习模型是数据驱动方法的两个主要代表。在时间序列分析中,自回归综合移动平均(ARIMA)及其变体是基于经典统计的最统一的方法之一[Ahmed and Cook, 1979;Williams和Hoel, 2003]。然而,这类模型受时间序列平稳假设的限制,未能考虑到时空相关性。因此,这些方法限制了高度非线性交通流的可表征性。近年来,经典的统计模型受到了交通预测任务中的机器学习方法的挑战。这些模型可以实现更高的预测精度和更复杂的数据建模,如k近邻算法(KNN)、支持向量机(SVM)和神经网络(NN)。
目前,深度学习方法已经被广泛成功地应用于各种交通任务中。相关工作取得了显著进展,如深度信念网络(DBN) [Jia等人,2016;黄等人,2014],stacked autoencoder (SAE) [Lv等人,2015;Chen等,2016]。然而,对于这些密集的arXiv:1709.04875v4 [cs]来说,这是困难的。LG] 2018年7月12日联合网络从输入中提取时空特征。此外,在狭窄的约束条件下,甚至在完全缺乏空间属性的情况下,这些网络的代表能力将受到严重的阻碍。
为了充分利用空间特征,一些研究人员使用卷积神经网络(CNN)捕捉交通网络之间的相邻关系,并在时间轴上使用回归神经网络(RNN)。Wu和Tan[2016]结合长-短期记忆(LSTM)网络[Hochreiter和Schmidhuber, 1997]和一维CNN,提出了一种用于短期交通预测的特征级融合架构CLTFP。尽管它采用了一个直截了当的策略,CLTFP仍然第一次尝试对齐空间和时间的规律。随后,Shi等人[2015]提出了卷积LSTM,它是一种嵌入卷积层的扩展全连接LSTM (FC-LSTM)。然而,常规的卷积运算限制模型只能处理网格结构(如图像、视频),而不能处理一般领域。同时,用于序列学习的递归网络需要迭代训练,引入了误差逐步积累。此外,众所周知,基于rnn的网络(包括LSTM)训练困难且计算量大
为了克服这些问题,我们引入了几种策略来有效地建模交通流的时间动力学和空间依赖性。为了充分利用空间信息,我们用一般图形来建模交通网络,而不是单独对待它(如网格或分段)。为了解决递归网络的固有缺陷,我们采用了时间轴上的全卷积结构。首先,我们提出了一种新的深度学习架构——时空图卷积网络,用于交通预测任务。该架构包括几个时空卷积块,它们是图卷积层[Defferrard等人,2016]和卷积序列学习层的组合,以建模空间和时间依赖性。据我们所知,在交通研究中应用纯卷积结构同时从图结构时间序列中提取时空特征尚属首次。我们在两个真实世界的交通数据集上评估我们提出的模型。实验表明,该框架在具有多个预估长度和网络规模的预测任务中性能优于现有的基线。
2 Preliminary
2.1基于道路图的交通预测
交通预测是一个典型的时间序列预测问题,即在给定之前的M个交通观测值的情况下,预测下一个H时间步中最可能的交通测量值(例如速度或交通流量):
其中vt∈Rn是n个路段在时间步长t时的观测向量,每个元素记录单个路段的历史观测值。
在这项工作中,我们在一个图上定义交通网络,并重点关注结构化交通时间序列。观