Lighting Every Darkness in Two Pairs: A Calibration-Free Pipeline for RAW Denoising_ICCV2023

论文地址

Amber:作者强调实现真值图和噪声图的对准是困难的,并且提出一个解决方案,这个方案的实现逻辑还没有完全看明白,继续加深
TBD:看以下内容,其他部分暂时不管
1、Introduction细读
2、使用的数据集&评价标准
3、和SOTA方法的对比方式&结果

Abstract

1、背景知识:基于 calibration 的方法在极低光照的 RAW 图像去噪中占主导地位,该方法有诸多不足(此处略)

2、作者提出一个 calibration-free性能不受数字增益和相机 sensor 影响的 pipleline LED

3、好处:不需要重复标定噪声参数和训练,只用使用较少的配对数据+微调就可以适配新 sensor


1、Introduction

1、用 RAW 图去噪比用 RGB 好:原始的易于处理的噪声分布&更大的比特位深,都有利于区分信号和噪声

2、不可能为每个相机模型分别构造真实RAW图数据集,要用合成的数据集&基于学习的方法

在这里插入图片描述
(a)基于校准/对齐的图像去噪方法

2、Related Work

2.1 用成对的真实数据训练

  • SIDD:RAW数据图像去噪的先锋
  • SID、ELD:可以处理极微光环境
  • Noise2Noise、Noise2NoiseFlow:使用成对低质量raw图训练,避免了获取 noisy-clean 图像对的体力劳动。但无法应对强噪声场景,如非常黑暗的环境。
  • LED:在极微光环境拍摄少量成对的图像,补充去除噪声的信息

2.2 基于标定去噪

  • 合成噪声方法的局限:在极微光环境下合成噪声模型的泊松/高斯噪声和真实噪声分布偏差巨大
  • 基于标定去噪的方法
    • 优点:模拟电子成像pipeline的每个噪声分量,写实向
    • 不足
      • a) 标定过程要稳定照明&复杂后处理,费力&耗时
        • 稳定照明:亮度和温度
        • 标定专用数据集:每个相机设置的数十张图
        • 复杂后处理:对齐、定位和统计
      • b) 不同 sensor 特性不同,去噪模型难迁移应用
      • c) 合成噪声和真实噪声之间存在差异,高数字增益会将这种差异放大
  • LED: a calibration-free pipeline, a pre-training and fine-tuning framework, a proposed RepNR block

3、从合成噪声到真实噪声

  • 在合成数据集上训练,在真实数据集上验证,数据的差异不可避免。如何弥补?
    • AdaIN、few-shot learning:使用迁移学习、域适应来缓解(TBD:是什么?)
    • 极暗场景,这些方法的信号重建失效,因为极端噪声&数字增益会导致数值不稳定
  • LED(TBD:看不懂)
    • propose camera-specific alignment:避免了数值不稳定,解耦了 the camera-specific information & the noise model's common knowledge
    • 对齐步骤可以当作卷积的一部分?

3、Method

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值