UWB TOF公式的一种理解方式

文章详细介绍了UWBTOF(TimeofFlight)的基本原理,探讨了一次请求与两次请求的测距方法,并对比了两种计算公式(C1=(A1-B1)/2和C=(A1*A2-B1*B2)/(A1+A2+B1+B2))。在理想情况下,后者的误差可能更小,更充分利用了数据。同时,文章提到了数值推导和误差分析对于理解TOF测距法的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UWB  TOF的基本原理见如下博客

UWB的定位算法(简单详细易懂)_小阳先生的宝库的博客-CSDN博客_uwb定位算法

对于一次请求,一次响应很容易理解C=(A-B)/2

d8790ae796a841eeba5996362d0866f3.jpg

对于两次请求,一次响应很容易理解同理有

C1=(A1-B1)/2C2=(A2-B2)/2

19f7007faca04f73ad4e3f705c3ced39.jpg

到这一步自然的想法是

C=(C1+C2)/2=(A1+A2-B1-B2)/4

而TOF的公式为C=(A1*A2-B1*B2)/(A1+A2+B1+B2),让人一时摸不着头脑

a57d10a0f7b541f88e705f64fe3e01ed.jpg

C1=(A1-B1)/2,C2=(A2-B2)/2

与 C=(A1*A2-B1*B2)/(A1+A2+B1+B2) 有什么关系呢?

d7b77d71067041799c3f7366f39e6b87.jpg

对于C=(A1*A2-B1*B2)/(A1+A2+B1+B2),在理想情况下有A1=A2,B1=B2

代入C=(A1*A2-B1*B2)/(A1+A2+B1+B2)

=  (A1*A1-B1*B1)/(A1+A1+B1+B1)

=((A1-B1)*(A1+B1))/2*(A1+B1)=(A1-B1)/2=C1

492dc62e836c404698e2950a7bbeb40c.jpg

也就是说在理想情况下

C=(A1*A2-B1*B2)/(A1+A2+B1+B2)

退化为C1=(A1-B1)/2

受此启发,将C1=(A1-B1)/2,C2=(A2-B2)/2扩写为C=(A1*A2-B1*B2)/(A1+A2+B1+B2)形式

C1=((A1-B1)*(A1+B1))/2*(A1+B1)=(A1*A1-B1*B1)/((A1+B1)+(A1+B1))

   C2=((A2-B2)*(A2+B2))/2*(A2+B2)=(A2*A2-B2*B2)/((A2+B2)+(A2+B2))

0c0f9221cba64d9b9de617c8f2f8076d.jpg

C1,C2具有相同的形式,A1,A2具有相同的物理意义  在数值上也相近;B1,B2具有相同的物理意义  在数值上也相近,       

根据对称的思想将扩写后的C1,C2表达式中的"一半的A1,B1用A2,B2替换"

C1=(A1*A1-B1*B1)/((A1+B1)+(A1+B1))

==》C1=(A1*A2-B1*B2)/((A1+B1)+(A2+B2))

a25a7caf14d84a7cb55d045f22c40e0e.jpg

由此得到了TOF的公式为

C=(A1*A2-B1*B2)/(A1+A2+B1+B2)

与C=(C1+C2)/2=(A1+A2-B1-B2)/4 相比,C=(A1*A2-B1*B2)/(A1+A2+B1+B2)可能更“充分的利用了数据减少了误差”吧

关于TOF公式的数值推导和误差分析可见如下博客

UWB中TOF测距法的公式推导_tyst08的博客-CSDN博客_双边双向测距算法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值