[文献翻译] 光无线混合网络:趋势、机遇、挑战与研究方向

光无线混合网络:趋势、机遇、挑战与研究方向

Optical Wireless Hybrid Networks: Trends, Opportunities, Challenges, and Research Directions
Mostafa Zaman Chowdhury , Senior Member, IEEE, Moh. Khalid Hasan , Student Member, IEEE,Md. Shahjalal , Student Member, IEEE, Md. Tanvir Hossan , Member, IEEE, and Yeong Min Jang , Member, IEEE

摘要

摘要:光无线通信(Optical wireless communication, OWC)是射频(radio frequency, RF)通信的绝佳互补方案。研究表明,OWC技术能够支持物联网(Internet of Things, IoT)海量连接及第五代(5th generation, 5G)无线通信系统产生的高流量需求。由于OWC与RF的特性具有互补性,二者的融合应用被视为支撑5G及未来通信系统的理想途径。射频/光与光/光混合无线系统既能弥补单一系统的局限性,又可整合各项技术的优势特征。其中,射频/光混合系统同时包含射频与光无线技术,而光/光混合系统则整合两种及以上OWC技术。无线系统的协同部署可提升网络吞吐量、可靠性及能效等性能指标。本文首次针对光无线混合网络展开系统性综述,梳理了该领域前沿进展与关键研究方向。我们全面概述了射频/光、光/光等混合网络的技术体系,涵盖射频宏蜂窝、小基站、Wi-Fi、蓝牙,以及可见光通信、光保真、光学相机通信、自由空间光通信等光无线技术在不同混合系统中的应用组合,并探讨了水声通信在声/光混合系统中的作用。文章详细阐述了混合系统带来的技术机遇,同时指出实现5G与物联网场景下光无线混合网络成功部署所面临的核心挑战。

引言

多媒体应用正呈指数级增长,每日产生海量移动数据,需要高数据速率的无线连接技术。即将到来的第五代(5G)通信将提供诸多新服务,具备超高系统容量、海量设备连接、超低时延、超高安全性、超低能耗以及极致用户体验质量(quality
of experience, QoE)[1]–[6]。支撑如此庞大的数据量对未来5G及后5G通信系统构成巨大挑战。因此,移动数据使用的指数级增长亟需高效技术解决方案,以确保终端用户的服务质量(quality of service, QoS)。

众所周知,基于射频(RF)的通信由于无线网络中有限的频谱资源正变得越来越受限[7]–[9]。因此,为满足日益增长的需求,许多研究者目前将免许可的光学频谱[1毫米–10纳米]视为射频的有前景互补技术。光无线通信(OWC)正是这样一种利用光学频谱作为通信媒介的系统[10]–[17]。得益于发光二极管(LED)的快速发展,OWC已成为一种极具潜力的解决方案[18]。该技术不仅能利用广阔的光学频谱,还能提供高质量通信特性,如无电磁干扰、高安全性及高能效[19]–[23]。研究显示,在标准室内照明水平下,OWC可实现100 Gbps的数据传输速率[24]。为实现无线数据传输,部分OWC技术(如可见光通信VLC和光保真技术LiFi)直接利用现有照明基础设施[25]–[27]。此外,OWC技术完全顺应了通信行业向高能效发展的趋势[28]。由于多数OWC技术无需复杂基础设施,既可维持至关重要的环保议程,又能最大限度降低安装成本[29]。光线无法穿透墙壁的特性使OWC具备更强的数据安全性。该系统可采用可见光(VL)、红外辐射(IR)或紫外(UV)光谱作为传输介质,目前已有大量无线系统基于这三个光学波段开发。最具前景的OWC技术包括VLC、LiFi、光学相机通信(optical camera communication, OCC)和自由空间光通信(free-space optical, FSO)[30],这些技术在传输介质、通信协议、架构和应用场景上各具特色。VLC、LiFi与OCC技术既有共性也存在差异,后续章节将简要讨论。尽管OWC系统优势显著,但仍存在若干局限性:高度依赖视距传输(line-of-sight, LOS)、覆盖范围小、连接突然中断的敏感性、不同光源产生的干扰、户外大气导致的性能衰减,以及有限的发射功率。因此,克服这些限制是实现OWC成功部署的关键挑战。射频波段(3千赫兹–300吉赫兹)的使用受到各地与国际机构的严格监管[30],且干扰问题是RF通信的严重缺陷。然而,基于RF的无线技术在非视距(non-line-of-sight, NLOS)条件下具有更高移动性和更优性能,这些独特优势可弥补OWC系统的部分局限性。

为提供高质量的服务质量(QoS),由射频(RF)和光无线网络组成的异构网络(HetNets)融合将在整合多样化频谱方面发挥重要作用。宏基站、微基站、毫微微基站和阿托基站等两种或多种不同接入技术的协同运行被称为异构网络。在异构网络中,不同接入技术相互配合以实现流量分流并克服QoS限制。异构网络中增加的层级可在需要时提供额外的无线容量。为克服射频和光无线系统的局限性,研究人员已提出若干射频/光无线混合系统[31]–[46]。这种混合系统同时包含射频和光无线技术,终端用户既能享受射频系统保障的广阔覆盖范围,又可获得光无线系统提供的稳定传输速率。此类网络具有实际可行性,因为射频系统与光无线通信(OWC)系统可在办公室、房间等相同环境中共存且互不干扰。

混合方法整合了两种或多种不同技术[例如射频/光学、射频/自由空间光通信(FSO)、无线保真(WiFi)/光保真(LiFi)、毫微微蜂窝/可见光通信(VLC)、电力线通信(PLC)/VLC、低功耗蓝牙(BLE)/光相机通信(OCC)、VLC/FSO、LiFi/OCC以及声学/光学],能够同时发挥各项技术的优势[39], [47]–[63]。混合网络在负载均衡、链路可靠性提升、无缝移动、能效增强、偏远地区无线连接覆盖(如深空、深海及地下环境)、安全性强化及干扰抑制等方面具有重要作用,因此这类网络已引起广泛研究关注。在地面应用中,可同时部署射频/光学及光学/光学无线混合系统。这两类系统均可衍生出多种混合架构组合,其中光学/光学无线系统由两种及以上光无线通信(OWC)技术构成。

image-20250507195102238
图1. 采用光无线混合网络提供的多层级网络架构。

在水下通信(underwater communication, UWC)中,可考虑采用声学/光学无线混合系统的声学通信方式。根据不同的通信环境需求,可选择多种类型的混合系统。构建多层网络的可能性是混合网络的重要优势之一。在多层架构中,网络覆盖由一个或多个附加网络的覆盖叠加而成。图 1 展示了利用光学无线混合系统提供多层网络的示例。该图显示,5G宏蜂窝基站(macrocellular base station, MBS)提供更广的覆盖范围;在家庭内部,射频接入点(access point, AP)(如WiFi或毫微微蜂窝AP(femtocell AP, FAP))形成小型层级;可见光通信(VLC)或LiFi微微蜂窝的可用性则新增一层级,从而构成三层网络。使用路灯的LiFi系统也可形成双层网络。在购物中心内,用户可通过光学相机通信(OCC)系统进行定位并获取商品信息,由此形成双层网络。在公交车内,用户可接入宏蜂窝、毫微微蜂窝或LiFi微微蜂窝网络,形成三层网络。毫微微蜂窝[64]是一种用于在目标地理区域范围内扩展蜂窝网络连接的射频小蜂窝。蜂窝LiFi网络被称为微微蜂窝网络,其小区尺寸较典型的射频毫微微蜂窝[65]更小。

表 I
关于光无线通信及相关技术的综述/研究
年份杂志名称论文作者主要贡献光无线系统
1997IEEE会议录J. M. Kahn等人 [20]使用强度调制和直接检测详细介绍了红外通道的物理特性红外
2008IEEE通信杂志Z. Xu等人 [12]概述紫外通信和相关问题,如链路特性化、信道建模、链路容量、收发器设计、链路复用、多址接入和网络紫外线
2011IEEE通信杂志H. Elgala等人 [9]审查和总结光无线通信技术的进展,重点放在室内部署场景上OWC
2012EURASIP Journal on Wireless Communications and NetworkingD. K. Borah等人 [16]概述短程和长程光无线通信系统OWC
2013IEEE通信调查与教程A. Sevinc等人 [66]调查VLC和FSO的进展,探索将这两者作为单一研究领域进行整合的潜力VLC, FSO
2013IEEE通信杂志L. Grobe等人 [23]展示高速室内VLC的成就和趋势VLC
2014IEEE通信调查与教程M. A. Khalighi等人 [67]调查FSO通信系统,包括信道模型、收发器结构、调制、信道编码、空间/协作分集技术、自适应传输以及混合RF/FSO系统FSO
2015IEEE通信精选领域期刊Z. Ghassemlooy等人 [8]概述光无线通信系统,重点关注VLC、FSO、透皮光无线通信、UOWC和光学散射通信OWC
2015IEEE通信调查与教程D. Karunatilaka等人 [28]对VLC进行全面调查,强调面临室内应用的挑战VLC
2015IEEE通信杂志A. C. Boucouvalas等人 [14]审查标准化努力以开发光无线通信系统OWC
2015IEEE通信调查与教程P. H. Pathak等人 [68]系统地研究VLC并确定重要挑战VLC
2015IET光电电子学N. Saha等人 [69]调查OCC系统,包括OCC概述、实现问题、调制、挑战和研究方向OCC
2016IEEE AccessH. Kaushal等人 [70]概述近年在UOWC方面的最新进展,包括信道特性化、调制方案、编码技术以及各种噪声源UOWC
2016数字通信与网络L. U. Khan [71]调查VLC潜在应用、架构、调制技术、标准化和研究挑战VLC
2017IEEE通信调查与教程A. Dimian等人 [72]解决车载通信应用中VLC使用相关的问题VLC
2017IEEE通信调查与教程H. Kaushal等人 [73]调查地面到卫星/卫星到地面和星间链路的FSO通信系统中面临的多种挑战FSO
2017IEEE通信调查与教程Z. Zeng等人 [74]从三个方面调查UOWC研究,包括信道特性化、调制、编码技术以及实际实施UOWC
2017数字通信与网络I. K. Son等人 [75]将未来的全球FSO网络分为三个子网并进行详细解释FSO
2018光波技术期刊T. Koonen等人 [10]概述光无线通信及其支持技术,适用于宽视场接收器、设备定位、双向混合光纤/无线电网络和双向全光纤无线网络OWC
2018IEEE AccessM. Z. Chowdhury等人 [30]概述光无线技术并明确区分这些技术OWC
本论文作为第一个全面的光无线混合系统的调查,讨论了各种无线混合系统中的不同问题,包括光无线通信网络混合RF/OWC, OWC/OWC, RF/UOWC

据我们所知,目前文献中尚未出现关于基于光无线混合系统的综述性文章。本文提出了一篇全面涵盖光无线混合系统领域的论文。尽管已有大量研究聚焦于光无线通信(OWC)及相关技术,但这些综述仅关注不同的OWC技术,内容尚不充分。为更清晰地说明,我们在 表 I 中列出了OWC及相关技术的已有综述/评述,并简要概述了其主要贡献。本文是少数深入探讨光无线混合系统的综述之一,重点分析了包含OWC网络在内的各类无线混合系统的相关问题。研究涵盖了VLC(可见光通信)、OCC(光学相机通信)、LiFi(光保真)、FSO(自由空间光通信)等OWC技术,以及毫微微蜂窝、WiFi、宏蜂窝、微波/毫米波链路等射频(RF)技术,探讨了这些技术可能的混合解决方案组合。此外,针对水下无线通信(UWC),还探讨了声学/光学混合系统。

图2. 本文讨论的重要光无线混合系统。

图 2 展示了本文讨论的重要无线混合系统类型,包括RF/VLC、RF/LiFi、RF/OCC、WiFi/VLC、毫微微蜂窝/VLC、WiFi/LiFi、毫微微蜂窝/LiFi、RF/FSO、电力线通信/VLC、蓝牙低功耗/OCC、声学/光学、VLC/OCC、LiFi/OCC及FSO/OCC等混合网络。本文的主要贡献可归纳如下:

  1. 总结了可用于各类混合系统的无线技术;
  2. 提出两类系统框架:射频/光无线混合网络与光/光无线混合网络;
  3. 阐释了室内、车载、定位、自由空间、水下及电子健康(eHealth)等场景下的多种无线混合系统;
  4. 综述了射频/光无线与光/光无线混合网络的最新研究并探讨技术趋势;
  5. 分析了混合网络的接入选择、切换、资源共享、分组调度及负载均衡问题;
  6. 探讨了混合系统部署中的关键挑战;
  7. 提出了未来研究方向。

论文结构如下:第二节概述混合系统发展背景;第三节讨论射频/光无线混合系统的潜力、趋势及研究方向;第四节阐述光/光无线混合网络系统;第五节总结关键挑战、未来研究启示与经验教训;第六节为全文结论。

系统概述

混合无线系统通过整合两种或多种无线技术,以获取更优特性并克服单一技术的局限性。射频/光无线混合系统实现了射频网络与光无线通信(OWC)网络的融合,而光/光无线混合系统则整合了两种或多种不同的OWC技术。此类系统的目标与固定移动融合(FMC)高度相似——FMC通过将有线与无线技术整合为单一解决方案[76][77],实现固定网络与无线网络的无缝连接,确保服务不受网络类型限制。

A. 光无线混合系统所涉网络简述

本研究针对混合系统探讨了多种射频、光无线通信及水下声学通信技术。图 3 展示了不同射频与光通信技术所使用的电磁频谱。

图3. 电磁波谱[30]。

电磁频谱的各频段因其传输、发射、吸收特性及实际应用场景的差异而命名迥异。其中,光无线通信系统可利用的频谱范围极为广阔。以下简要介绍相关技术:

可见光通信(VLC)[28][68][71][72][78-88]:采用LED灯具或激光二极管(LD)作为发射器,光电探测器(PD)作为接收器,仅利用可见光波段实现通信,兼具照明与定位功能。其传输速率已达100Gbps[24],支持单向/双向及点对点/点对多点模式,但无需强制支持移动性与照明功能。VLC性能易受阳光及环境光源干扰,故不适用于户外场景。室内部署时存在覆盖盲区(即信号强度极低导致通信中断的区域),且通信距离较短。

LiFi[26][65][89-93]:类似WiFi,在提供高速无线连接的同时支持照明功能。与VLC类似,采用LED/LD发射器与PD接收器,兼具通信、照明与定位能力。LiFi系统需在通信两端配置收发设备,因此强制支持双向通信及点对多点模式,且必须保障移动性与照明支持。其强度调制人眼不可见,通信体验与射频系统无异,但同样易受阳光及环境光干扰,室内部署时亦存在覆盖盲区。LiFi与VLC虽可共用混合架构,但核心差异在于:(i) LiFi强制支持点对多点通信,而VLC无此要求;(ii) VLC仅用可见光通信,LiFi前向链路用可见光,反向链路可选可见光或红外[30]。

光学相机通信(OCC)[94-104]:以LED和相机分别作为发射器与接收器,通过相机图像传感器可同步捕获并区分多光源信号[30]。通过像素分离技术可消除阳光等背景噪声干扰,故即使在户外也能实现抗干扰通信。但其传输速率较低,仅适用于低数据量应用场景。

自由空间光通信(FSO)[73][111-113]:采用LD发射器与PD接收器,利用高聚焦性、相干性强的激光实现远距离低干扰高速通信,通常以红外为传输介质。其点对点通信距离极远且速率极高,但性能受环境条件影响显著,且在移动场景下难以维持精确对准。

表 II 对比了多种光无线通信(OWC)技术在若干重要特性上的表现。混合系统不仅包含OWC技术,还可能整合射频(RF)技术。

表 II
各种OWC技术的比较 [8], [24], [27], [30], [67], [94], [105]–[109]
问题VLCLiFiOCCFSO
发射器LED/LDLED/LD (结合了光学扩散器的激光二极管)LEDLD
接收器PD/cameraPDCameraPD
通信距离20 m10 m60 m超过10000 km
移动支持非强制强制非强制
干扰水平
通信拓扑单向或双向双向单向单向或双向
数据速率使用LED时为10 Gbps,使用LD时为100 Gbps使用LED时为10 Gbps,使用LD时为100 Gbps55 Mbps40 Gbps
光谱VLIR/VL/UVIR/VLIR/VL/UV
光谱管理
优点高数据率
广泛的应用范围
同时使用照明和通信
高安全性
双向通信
点到多点通信
低移动支持
高数据率
广泛的应用范围
同时使用照明和通信
高安全性
在户外条件下表现出色
同时使用照明和通信
高安全性
高数据率
很长的通信距离
高安全性
性能不受雨水影响
缺点不保证移动支持
小覆盖面积
性能受环境条件影响
在户外应用中性能不佳
可能产生覆盖空洞
有限的非视距通信
小覆盖区域
受环境影响
在室外应用中的表现不佳
可能造成覆盖空洞
有限的非视距通信
不适用于长距离通信
仅适用于低数据率应用
仅限直视通信
性能受到雾、雪和灰尘的影响
易于传输接收器错位
仅限直视通信

以下简要介绍几种主流射频无线技术:

射频小蜂窝网络[64]:如毫微微蜂窝网络技术,这类小蜂窝广泛部署于用户家中以提供高质量服务。小蜂窝基站(如FAP)是一种微型蜂窝基站,可服务6至8名用户,工作于运营商授权频谱。该技术能有效扩展蜂窝覆盖至信号盲区,现有宽带网络(如以太网、有线电视网和电力线载波网络)为其提供回传支持。小蜂窝使用的射频频谱资源珍贵,需高效管理,是实现固定移动融合(FMC)的理想方案。

宏蜂窝网络:该技术主要应用于户外广覆盖场景,支持用户移动性,但存在数据速率低、多用户容量有限的缺点,需谨慎规划其宝贵频谱资源。

微波链路网络[114]:利用微波频段无线电波实现远距离高速信息传输,文献[114]展示了12.6 Gbps的传输能力。作为光纤的替代方案,特别适用于偏远地区,可实现超100公里的点对点通信,但其性能易受雨雪、太阳风暴等天气影响。

蓝牙[115][116]:采用2.400-2.485 GHz频段短波无线电,支持2 Mbps短距数据传输,具有低功耗特性但安全等级较低。

WiFi[117][118]:基于IEEE 802.11标准的无线局域网技术,其中802.11ad版本可支持约8 Gbps速率,尽管采用多种加密系统仍存在安全隐患。

水声通信[70][74][119][120]:水下数据传输技术,最大通信距离达20公里(为所有水下无线技术之最[121]),但传输速率仅处于kbps量级。

表III总结了上述射频技术的核心优劣势。

表 III
各种射频技术的关键优势与局限性 [64], [70], [74], [114]–[120]
技术类型优势局限性
WiFi- 高速率数据传输
- 免许可自由频谱
- 中等覆盖范围
- 支持适度移动性
- 低部署成本
- 支持视距/非视距通信
- 无服务质量保障
- 低安全性
- 强干扰影响
毫微微蜂窝(Femtocell)- 保障服务质量
- 中等覆盖范围
- 支持适度移动性
- 支持视距/非视距通信
- 有限频谱资源
- 容量受限
宏蜂窝(Macrocell)- 保障服务质量
- 大范围覆盖
- 支持完全移动性
- 支持视距/非视距通信
- 有限频谱资源
- 低数据传输速率
- 高成本
微波/毫米波链路- 性能不受雪、雾、尘埃显著影响- 降雨会显著影响性能
- 易受电磁及其他干扰
蓝牙(Bluetooth)- 免许可自由频谱
- 支持视距/非视距通信
- 低安全性
- 强干扰影响
- 有限工作范围
水下声学通信- 长距离通信能力
- 支持视距/非视距通信
- 极低数据传输速率
- 长传播延迟
- 易受水体性质影响

B. 混合系统如何工作?

混合系统包含两个或多个网络[122]–[126]。这些网络可根据应用场景和可用网络类型以不同方式运行。若两个网络同时存在,则可能实现以下通信类型:

  • 同时接入两个网络:接收端同时从两个网络获取信息,从而提升系统可靠性。
  • 从可用网络中选择最佳网络:接收端评估可用网络并选择最优网络。
  • 前向路径与返回路径使用不同网络:在该混合系统中,一个网络用于前向路径,另一个网络用于返回路径。
  • 基于业务类型接入:不同应用需要不同等级的服务质量(QoS),由各类网络提供支持。因此根据应用类型,可用网络会被分类以服务特定需求。
  • 接入最高优先级网络并将其他作为备份:在该系统中,一个网络用于连接,另一个网络则作为备份保留。

**图 4 **展示了混合网络拓扑结构[31],[127]–[131]。

图4. 混合网络拓扑结构
  • (a) 上下行链路均采用双网络并行传输
  • (b) 下行链路采用网络1,上行链路采用网络2
  • (c) 上下行链路均采用网络1,下行链路额外叠加网络2
  • (b) 上下行链路均采用网络1,上行链路额外叠加网络2
  • (e) 源节点与中继间采用网络1,中继与目的节点间切换至网络2

任何可用网络均可作为上行链路、下行链路或两者使用。然而在被称为混合网络的中继型系统中,一个网络建立源节点与中继间的通信,另一个网络则建立中继与目的节点间的通信。图中显示网络1的AP-1和网络2的AP-2以不同方式为移动终端(MT)提供服务,所有可能的MT通信组合均在本图中展示。

混合系统涉及的关键问题包括资源共享、上下行链路共享协议、分组调度、移动性支持、负载均衡、网络选择及物理层安全。联合资源分配系统通过迭代优化混合无线系统中接入点分配给关联用户的功率与带宽。已有诸多研究探讨资源分配问题,文献[33]提出的联合算法优化了射频与可见光通信接入点分配给用户的功率带宽,通过交替优化解决功率分配子问题与带宽分配子问题来处理非凹优化问题。文献[132]的带宽聚合协议将数据包分配至可见光与射频通信链路,并在目的地按序重组这些分布式数据包。由于通信链路阻塞,部分通过可见光链路传输的数据包可能丢失,该协议具备重传功能可通过射频重传丢失数据包,并采用吞吐量最优调度器,这种调度决策对系统整体性能至关重要。

文献[59]提出的分布式信道分配与速率控制方法解决了FSO/RF混合系统的跨层设计问题,采用载波侦听多路访问/冲突避免(CSMA/CA)协议,通过测量链路信道需求确定信道使用。文献[52]的链路适配方案联合优化通信系统整体互信息,在射频/光无线混合系统中实现最大化,系统总功率被联合优化分配至各信道。Wang等[133]提出基于演化博弈论的室内RF/LiFi混合网络负载均衡方案,该系统协同处理接入点分配与资源分配,而不仅关注网络选择,并在资源分配中采用最大最小公平与比例公平调度器。文献[31]的媒体访问控制协议结合载波侦听多路访问、冲突避免算法及并行传输概念,解决RF/VLC混合网络中节点的多址接入问题。文献[123]针对RF/VLC混合系统提出动态资源优化方案,利用李雅普诺夫优化技术构建双时间尺度随机网络资源优化问题,以适应随机内容到达率与动态信道条件。

上下行链路共享方式取决于应用策略与混合系统采用的无线技术类型。基于LED的接收设备(如智能手机)不具备高功率特性,因此VLC和LiFi等光无线通信系统在射频/光无线混合系统中上行链路性能欠佳[53],[134],通常由射频系统管理上行通信。下行通信可由光或射频系统以不同方式实现,光无线系统的下行性能取决于其特性:VLC与LiFi系统通常提供高数据速率连接,而射频下行则作为辅助支持切换、克服非视距情况并降低干扰。Feng等[55]提出三种射频/光无线混合系统下行通信方案:

(一) 纯光网络下行:最简单的部署形式,光无线链路独立完成下行通信,技术难点在于视距失准与光线遮挡,影响因素包括阴影效应、多径、符号间干扰、多址干扰及相位诱导强度噪声[55]。

(二) 射频作为光下行备份:射频链路作为备份提升传输可靠性。当光链路出现失准、遮挡或信号衰减时,数据传输切换至射频备份网络以保持通信连续性,待光信号恢复后切回。适用于光链路频繁中断的环境。

(三) 光射频并行下行:同时使用两种链路实现高容量传输,最大化下行速率但需复杂动态流量管理与数据分流算法,适合大容量需求场景。光链路性能受用户移动性与遮挡影响显著,可通过信道编码、中继技术与传播协议有效改善。

混合无线系统中的分组调度需有效平衡各子系统流量负载。Pratama与Choi[132]提出基于队列长度的RF/VLC混合系统调度算法,该算法亦适用于其他光无线混合系统。最大吞吐量调度通过定义队列长度的李雅普诺夫函数最小化其漂移,实现网络吞吐量最大化。其原型系统能分配数据包至各链路并在接收端重组,针对光链路丢失数据包采用射频重传机制,该吞吐量最优调度器可高效管理光射频网络间切换。Hammouda等[135]提出多机制传输策略,根据QoS需求选择链路,采用ON-OFF数据源最大化平均到达率并最小化缓冲延迟。

垂直切换是混合无线系统的常见现象,其核心挑战在于通过高效管理维持系统性能。主流处理方法包括马尔可夫决策过程、模糊逻辑与层次分析法(AHP),结合合作博弈(CG)最为有效。Wang等[18]将垂直切换建模为马尔可夫决策过程,在延迟需求与切换成本间实现动态权衡,通过预测光链路中断避免乒乓效应。Hou与O’Brien[48]提出模糊逻辑决策算法处理切换不确定性,结合即时切换(I-VHO)与驻留切换(D-VHO)提升决策质量。Purwita等[136]基于接收信号强度(RSS)预测WiFi/LiFi系统中用户随机移动导致的切换概率。文献[38]采用AHP与CG处理多属性决策,将切换决策视为合作者应用博弈论。

负载均衡是构建混合系统的重要原因。Obeed等[7]提出迭代算法指导用户选择RF/VLC接入网络,并构建优化问题分配射频与可见光接入点功率以最大化总吞吐量,其算法通过最优对偶变量实现快速收敛。Wang等[46]采用多臂老虎机模型选择光接入网络,提出"探索-开发指数权重"算法更新概率分布决策。文献[137]考虑切换开销提出动态负载均衡方案,联合优化接入点分配与资源分配。

物理层安全在光无线混合系统中至关重要。Marzban等[138]针对RF/VLC系统构建满足用户保密率需求的功耗最小化问题,采用迫零波束成形与最小功率分配算法解决物理层安全问题,该方法可推广至各类光无线混合系统。

射频/光无线混合网络

根据需求,可通过多种组合方式部署不同的射频/光无线混合系统[37][59][160]–[168]。 表IV 总结了混合射频/光系统的部分应用场景。

表 IV
混合系统应用概述
场景应用类型参考文献描述混合类型
室内负载均衡与高速数据通信[7], [31], [36], [40], [41], [49], [57], [132], [133], [137], [139]-[145]混合系统通过提供网络共享设施确保高速数据服务,将大量流量从高拥堵、低容量的WiFi、微蜂窝或宏蜂窝网络分流至VLC或LiFi网络。WiFi/VLC、WiFi/LiFi、宏蜂窝/VLC、宏蜂窝/LiFi、微蜂窝/VLC、微蜂窝/LiFi
链路可靠性提升[132]-[134]通过双网或多网共存提升链路可靠性。WiFi/VLC、WiFi/LiFi、宏蜂窝/VLC、宏蜂窝/LiFi、微蜂窝/VLC、微蜂窝/LiFi
回程连接[55]将基于RF网络的流量转移至FSO网络以实现回程连接。微波链路/FSO
电子健康(eHealth)[60], [146]混合OCC/蓝牙网络用于远程患者监护,提升系统性能。OCC/蓝牙
定位/导航[42], [103]室内智能手机或移动机器人利用混合系统提高定位精度。宏蜂窝/VLC、宏蜂窝/OCC、LiFi/OCC
室外车联网(V2X:车-车、车-基础设施、基础设施-车)[147]由光学OCC和/或FSO与RF网络组成的混合系统提升V2X通信的链路可靠性。RF/OCC、RF/FSO
车辆定位/导航[102], [148]混合RF/OCC系统用于建立可靠的车联网通信,实现车辆定位/导航。RF/OCC
回程连接[55], [58], [59], [110], [111], [147], [149]-[159]微波/毫米波与FSO链路共存提升链路可靠性,根据大气条件选择合适网络。微波/FSO、毫米波/FSO
水下高速数据、链路可靠性提升及回程连接[70], [74], [119], [120]根据通信距离、水体条件和视距/非视距情况,在RF、光学及声学系统中选择合适网络进行通信。RF/FSO、声学/FSO

射频/光无线混合网络似乎能兼顾两种技术的优势:当用户需要更高吞吐量时,通常可切换至光无线网络;若需非视距通信或更高移动性支持,则选择射频无线系统。此类混合系统可同时应用于室内外场景,包括车载及水下通信。本节将探讨几种混合系统的实例。尽管射频/光无线混合系统的应用场景与独立射频或光系统类似,但其网络性能较独立系统更具优势。本节将展示射频/光无线混合系统的多种应用案例。

A. 室内射频/光无线混合系统

目前,基于射频的技术(如WiFi、毫微微蜂窝和蓝牙)以及光无线技术(如可见光通信VLC、光保真LiFi和光相机通信OCC系统)已广泛应用于大多数室内无线场景。在多数室内环境中,多层异构网络(HetNets)结合了宏蜂窝(提供广覆盖和低数据速率服务)、射频毫微微蜂窝与WiFi(增强覆盖)以及光微微蜂窝(通过利用光频谱增加容量)。LiFi和VLC能够将流量从容量紧张的授权宏蜂窝和/或射频小蜂窝/毫微微蜂窝中分流。因此,射频/光无线混合系统克服了单一网络的局限性,融合了不同网络的优势。

图5 展示了几种室内射频/光无线混合系统的基本连接方式[18][38][44][47][161]。

image-20250507205638385
图5. 室内射频/光学系统的基本连接结构。

在室内场景中,“射频”一词通常泛指WiFi、毫微微蜂窝和宏蜂窝网络。由于智能手机等接收设备无法配备高功率LED用于上行通信,VLC和LiFi在上行链路表现不佳[53][134],尽管上下行通信均可实现。图中展示了毫微微蜂窝、LiFi和VLC的多种连接组合。OCC仅支持单向通信,其他方向的通信需依赖LiFi、VLC或射频网络。VLC和LiFi网络可实现上下行链路的所有可能组合,而射频系统在所有场景中均支持双向通信。这些混合系统实现了无线通信的多项目标:通过负载均衡提升吞吐量、通过射频与光无线技术(OWC)的互补部署降低干扰、借助射频广覆盖实现光无线系统间平滑切换,以及通过支持视距/非视距(LOS/NLOS)通信提升链路可靠性。

  1. 基于射频WiFi与小蜂窝的混合系统
    通过结合光无线技术与射频WiFi及小蜂窝,可构建多种混合系统。WiFi/VLC、小蜂窝/VLC、WiFi/LiFi、射频/OCC及小蜂窝/LiFi等混合网络均能提升系统性能。LiFi和VLC支持高速率传输,而WiFi和小蜂窝提供更广覆盖以增强移动性支持。若LED发射器密集分布,VLC和LiFi系统会面临干扰问题[148]。射频网络填补了LiFi和VLC的覆盖盲区,从而优化切换过程。射频与光接入点(AP)通过同一网关连接。

  2. 与宏蜂窝的混合系统
    并非所有室内环境都具备WiFi或小蜂窝覆盖。对此类场景,宏蜂窝/VLC或宏蜂窝/LiFi混合系统可提升服务质量(QoS)。低移动性、高数据速率且QoS要求较低的后台流量由LiFi或VLC网络承载,而高移动性与高QoS需求的服务则接入宏蜂窝网络。宏蜂窝网络同样填补了光无线网络的覆盖盲区,确保切换流畅。与WiFi/VLC等系统类似,宏蜂窝/VLC和宏蜂窝/LiFi混合系统也将流量分流至低成本、高数据速率的光无线网络,从而提升频谱利用率、链路可靠性、用户无缝移动性及安全性。VLC和LiFi分流宏蜂窝网络的繁重流量,在不引入额外干扰的情况下提高频谱与能效[41]。此类混合系统通常通过不同回传链路组建,例如家庭光AP通过以太网、有线电视(CATV)或电力线通信(PLC)连接,而室外宏基站(MBS)则采用光纤或自由空间光通信(FSO)回传。多回传链路可能导致用户流量同步问题。

  3. 室内射频/光无线混合系统的网络选择
    在射频/VLC和射频/LiFi混合系统中,流量分配需兼顾服务质量和资源利用率。网络选择可基于以下标准:

  • 上下行传输:室内环境中,光下行链路数据量通常高于上行链路。VLC/LiFi的高速率特性适合下行支持,而上行可由射频网络承担,从而大幅分流射频流量并降低干扰。
  • 流量类型:实时语音、银行业务等低速率高QoS服务适合射频网络,而视频流等高数据速率但低QoS要求的流量可分配给光无线网络。
  • 安全等级:光链路受限于空间阻隔,室内用户数据无法外泄,安全性更高。
  • 视距/非视距:光无线系统在非视距条件下可靠性不足,而射频网络可弥补此缺陷。
  • 照明需求:非工作时间(如节假日、白天或深夜)可关闭LED照明,此时无线连接可完全由射频网络提供。
  • 移动性支持:高移动性服务由射频网络承载,静态或低移动性服务则适合光网络。
  1. 室内混合光/射频系统的机遇
    混合系统为无线用户带来多重优势:
  • 流量分流至光无线网络:将流量卸载至VLC/LiFi可缓解WiFi和小蜂窝的干扰压力[143],尤其适合分流高QoS语音服务与低QoS后台流量。
  • 提升链路可靠性:双网络架构(如VLC/WiFi、LiFi/宏蜂窝等)通过冗余连接增强可靠性。
  • 无缝移动支持:射频网络的广覆盖填补光无线覆盖盲区,确保用户在光学AP间切换时的连续性。
  • 能效优化:光无线系统能耗低于射频网络,且LED兼具照明功能,流量分流可降低整体功耗。
  • 安全增强:光信号的物理阻隔特性使混合系统(如VLC/小蜂窝、LiFi/宏蜂窝)具备更高防窃听能力。
  • 干扰抑制:射频与光信号互不干扰,流量分流可降低用户设备(UE)和射频AP的发射功率,同时减少LED的干扰影响。
  • 频谱利用率提升:通过将高数据速率后台流量分流至光网络,宝贵的射频频谱得以优先服务高优先级或高移动性需求。

B. 车联网系统中的射频/光无线混合技术

出于安全考虑,链路可靠性在V2X通信中至关重要[72][88][101][102][169]。尽管光无线通信(OWC)在V2X中具备诸多优势,但其应用受限于视距传输(LOS)。因此,将其与5.9 GHz专用短程通信(DSRC)等射频系统结合可显著提升链路质量。DSRC作为成熟技术能提供相对更远距离的通信,而除自由空间光通信(FSO)外,其他OWC技术虽无法实现同等通信距离,但在高交通密度场景中展现出巨大潜力,其广泛地理分布也带来显著优势[72]。

可见光通信(VLC)可支持极短距离的车间视距通信,光学相机通信(OCC)能实现60米传输,FSO则能提供更远距离的点对点通信[109]。对于较长距离通信,VLC采用多跳方式传输信息,但高优先级消息的多跳传输可能导致端到端(E2E)延迟增加。射频/光无线混合系统可适配不同V2X通信场景。图6 展示了车载射频/光无线混合系统的应用场景,包括车对车(V2V)和车对基础设施(V2I)通信。道路上每辆车通过最近宏基站(MBS)向目标(其他车辆或交通设施)发送紧急信息。通过OCC技术,车载摄像头可接收视野范围内前向车辆的信号,同时接收交通设施的光信号。但OCC无法与前车更前方的车辆通信,此时需依赖DSRC建立连接。

图6. 车用混合射频/光网络的应用场景。

由于收发设备的移动特性及天气动态变化,车载混合无线系统面临特殊挑战,且需交通信号灯和蜂窝网络等基础设施支持。在户外车联网中,该混合架构能为V2X提供更优服务质量(QoS)[148],其核心价值体现在流量分流和链路可靠性两方面:将流量卸载至VLC光网络可缓解DSRC等射频系统的拥塞,同时规避邻频射频接入点(AP)的强干扰。链路可靠性作为V2X关键指标,混合系统能有效降低恶劣环境、非视距(NLOS)状态及高车流密度下的链路失效概率。

在混合系统组网选择中,需综合考量视距/非视距条件、通信距离需求及环境因素:FSO适合需精确对准的远距离通信,OCC适用于中距传输,而基于LED/光电二极管(PD)的VLC仅支持短距通信。现有射频系统则覆盖中距V2X场景。值得注意的是,雾霾、灰尘及环境光等会显著影响光学系统性能,因此环境条件也是网络选择的重要依据。

C. 自由空间中的射频/光无线混合通信

自由空间光通信(FSO)因其显著优势,如极高的可用带宽、低部署成本和免许可频谱[170]–[181],成为无线通信系统特别是解决最后一公里连接问题的有吸引力的方案。FSO系统为户外点对点通信提供了极高的数据传输速率。然而,该系统极易受大气效应影响,特别是在大气湍流和能见度受限的条件下,如雾、雪和灰尘。尤其值得注意的是,FSO系统依赖于视距(LOS)的可用性,这为移动节点带来了关键限制[149]。发射器需精确对准光电探测器(PD)是FSO系统的另一限制。热膨胀、动态风载荷和轻微地震会导致发射光束振动,从而引发FSO发射器与接收器之间的对准偏差[73][106][113][182]。

同时使用射频(RF)系统,如微波和毫米波[183]链路,可以克服这些限制。采用毫米波或微波的RF链路在雨天条件下表现不佳。此外,RF系统无法提供超长距离和高速通信。因此,FSO/RF混合系统是确保不同天气条件下链路可靠性的潜在解决方案,因为不同天气条件对链路的影响各异。在FSO/RF混合系统中,FSO系统作为主网络,而RF系统作为备用网络。这种混合系统甚至可用于极长距离的自由空间通信,如飞机间、卫星间、卫星对地、地对卫星、卫星对飞机、飞机对卫星、飞机对地、船舶间及船舶对基础设施的链路,且具有极高的可靠性。

图7 展示了混合RF/FSO系统的部署概况。

图7. 室外混合射频/自由空间光网络及其部署示例。

系统模型显示,可用网络之一用于链路连接。包含RF和FSO链路的双网络混合系统通过互联提升链路可靠性。中继连接是该混合系统的重要特性,这种基于中继的混合系统也被称为混合RF/FSO网络。图中还展示了一些可能的连接示例。

对于自由空间通信,这种混合架构确保了不同环境条件下更优的链路可靠性。其最重要的优势是在任何恶劣环境条件下均可保持链路可用性,适应所有天气状况。由于天气条件的动态变化,在混合RF/FSO连接中选择合适的网络至关重要。选择网络时需重点考虑环境条件和所需通信距离。FSO链路受雾、灰尘和雪的影响较大,而微波和毫米波则易受雨水干扰。在正常天气条件下可运行FSO系统,同时根据天气特征选择链路。然而,FSO的通信距离通常比RF链路更长,因此可根据所需通信距离选择网络。

D. 水下射频/光学与声学/光学混合网络

近年来,水下无线光通信(UWOC)因其在环境监测、石油管道检测及近海勘探等众多潜在应用中的价值而备受关注。许多水下无线通信(UWC)应用需依赖远距离高速链路,而实现水下通信的可能手段包括声学、射频和光学技术[184]–[191]。

相较于基于射频的陆地通信,水下射频与声波通信无法支持高数据率传输。由于声学通信的水下链路距离可达20公里(在所有UWC技术中最长),它成为水下无线通信的常用方案[121]。但因其工作频率范围在数十赫兹至数百千赫兹之间,系统数据率仅达kbps级别[121],且声学链路因传播速度慢易导致严重通信延迟。射频通信在远距离水下场景中性能极差,受多径传播、信道时变及强信号衰减(尤其在长距离下)等因素严重影响,故其应用受限于短链路距离。

采用405纳米蓝光激光器被视为实现远距离UWC的关键研究方向。光学系统可在10-100米距离内提供Gbps级视距(LOS)数据链路[70]。与其他技术相比,UWOC具有链路延迟最低、通信安全性最高、传输速率最快及实施成本最低等显著优势[121][186][187]。然而,UWOC在非视距(NLOS)场景中表现不佳,且视距通信需严格对准收发端。此外,海水吸收散射效应、信道湍流、对准误差等因素会严重劣化UWOC性能[74],导致通信频繁中断,因此需提升系统可靠性。表V 对比了三种水下通信技术的核心差异。

表 V
三种UWC技术的基本差异 [70], [74], [119] [120], [185]–[191]
问题/特性射频通信 (RF)水声通信 (Acoustic)水下无线光通信 (UWOC)
频率范围30–300 Hz 或 MHz 频段10 Hz–100 kHz1012-1015 Hz(太赫兹-红外)
发射功率毫瓦级至瓦级通常数十瓦数瓦级
数据传输速率兆比特/秒 (Mbps)千比特/秒 (kbps)吉比特/秒 (Gbps)
通信距离最远10米最远20公里10–100米
天线尺寸0.5米0.1米0.1米
性能影响因素电导率与介电常数温度、盐度、压力吸收、散射、浊度、有机物含量
传播延迟中等
信号衰减3.5–5 dB/米0.1–4 dB/公里海水0.39 dB/米,浑浊水体11 dB/米
视距/非视距 (LOS/NLOS)均支持均支持仅视距 (LOS)

基于对各UWC技术优缺点的分析,可得出结论:采用多系统并存的混合方案能突破单一技术局限。水下可部署射频/光学、声学/光学甚至射频/声学/光学混合系统。 图8 展示了水下混合通信中射频/光学、射频/声学及声学/光学系统的基础连接架构,支持水下节点间及水下与水面节点的通信。

图8. 水下通信中混合射频/光学系统的基本连接结构。

混合系统能为UWC带来关键优势,如通过流量分流至光无线网络提升链路可靠性。在混合系统中,射频与声学网络无法像光网络那样提供超高容量链路,故将流量分流至光网络可增强系统容量。射频/光学混合系统中,光无线系统可实现长短距离高速通信,而射频系统仅服务于短距离通信;声学/光学混合系统中,光无线系统支持高速视距通信,声学系统则适用于非视距场景。

相较于空中通信,UWC链路可靠性较低,而多系统共存能显著提升可靠性。当光学链路收发端未对准时,射频或声学系统可维持通信。水下通信网络选择的核心标准包括通信距离、业务类型及光学链路对准精度:声学系统适用于超远距离,射频系统仅限极短距离,UWOC则支持中距离高速通信但需严格对准。因此,精准对准时采用UWOC链路,其他场景则由射频或声学系统提供支持。

E. 射频/光无线混合技术在电子健康领域的应用

在医疗保健系统中,提供良好的监测系统至关重要。目前,大多数国家正致力于提升人类医疗保健体系[146][192]。任何潜在的电子健康解决方案要具备可行性,可穿戴传感器/贴片与接入网络的连接必不可少。当前这种通信主要通过基于射频的蓝牙低功耗(BLE)技术实现。然而,现有射频技术在电子健康应用中存在诸多缺陷:医疗场景下的射频信号会产生严重的电磁干扰效应,而许多医疗设备对此类干扰极为敏感,可能导致设备故障。不过,BLE能在非视距(NLOS)条件下维持通信链路。光相机通信(OCC)系统作为补充方案,为可穿戴传感器/贴片的网络接入提供了新选择,但其主要局限在于NLOS环境下无法建立连接。

因此,未来电子健康系统中,结合OCC与BLE的混合系统将成为通过贴片连接实现实时健康监测的理想解决方案。图9展示了射频/光无线混合系统的基本连接架构:体表传感器(如脑电图EEG、血压BP、肌电图EMG传感器)采集身体各部位数据后,通过集成OCC与BLE模块的皮肤贴片[60][148]传输。该贴片可分别连接摄像头(实现OCC)和BLE模块(实现射频连接)。如图9所示,患者在视距(LOS)条件下使用OCC系统,在摄像头非视距条件下切换至BLE。

图9. 电子健康中混合射频/光学系统连接性示例。

这种混合系统还适用于远程患者监护[30][60][146][148]:家庭场景中,各类体表传感器持续监测患者体征,数据通过BLE/OCC混合系统传输,使医生能远程跟踪病情。对于轮椅使用者,混合射频/OCC系统通过皮肤贴片采集健康数据,再经宏蜂窝网络或卫星网络传至核心网。另一典型应用是救护车急救服务[148]——车内安装的BLE/OCC混合系统收集患者信息,通过5G宏蜂窝或卫星网络实现核心网远程监控。

为实时患者监测提供超高可靠性、超低干扰的通信链路至关重要。OCC在NLOS环境下可靠性下降,而BLE存在显著干扰,因此双系统共存能有效提升链路可靠性。此外,BLE/OCC混合系统还增强了患者数据安全性(OCC系统可防止外部网络入侵)。故该混合系统的网络选择需重点考量视距/非视距场景条件。

F. 射频/光无线混合技术在定位/导航中的应用

光学与射频系统均被用于定位、导航及位置追踪[68][97][102][103][193]。在视距条件下,可见光通信(VLC)、光保真(LiFi)和光学相机通信(OCC)的定位精度优于WiFi系统[68]。

然而在非视距环境中,WiFi系统展现出更高精度。相较于射频技术,定向光网络能将室内定位精度提升至厘米级[103]。但光学系统在非视距场景中性能显著下降,且户外环境下受天气因素影响较大。全向射频技术与定向光无线技术的协同使用,可有效提升室内外定位/导航的整体性能。图10 展示了两种混合定位系统的应用案例:

图10. 混合射频/光学连接用于定位的示例。
  • (a) 室内定位。
  • (b) 室外车辆定位。

混合射频/光无线信号能增强远程定位能力。在室内场景中,智能手机可通过LED实现定位。如 图10(a) 所示,混合系统通过OCC技术使手机摄像头接收视场范围内多个LED的信号。这些信号包含LED物理尺寸、三维坐标等关键信息,借助摄影测量学可计算摄像头与LED间距[102]。由于手机位置持续变动,所有定位数据均通过WiFi接入点上传至照明服务器,该服务器通过预测移动轨迹来消除定位误差。

图10(b) 展示了该技术在车辆定位中的应用:车载摄像头接收LED数据并测算位置信息,该信息可与远端车辆共享,并通过宏基站(MBS)传输至核心网络。混合系统显著提升了远程定位的可靠性。

射频/光无线混合系统能建立超高可靠通信链路,双系统协同显著提升定位精度。在实际应用中,视距/非视距条件与环境因素是网络选择的重要考量,这对实现高效定位/导航至关重要。

G. 用于回传网络连接的射频/光无线混合系统

在5G及未来通信系统中,提供能够支持高节点密度并承载海量聚合数据的高容量回传基础设施是一项具有挑战性的课题。随着5G预期的巨大数据需求和物联网的大规模连接,文献[112]、[194]提出了回传架构优化的基础性问题。当前使用的回传链路可大致分为四类:铜缆、无线链路(如毫米波和微波)、光纤以及自由空间光通信(FSO)链路。尽管有线回传解决方案(如光纤)在5G及未来通信系统中至关重要,但它们与本文关联性不高。传统上,铜缆是回传网络中最广泛使用的技术[194]。然而,T1和E1铜缆提供的数据速率较低(T1为1.544 Mb/s,E1为2.048 Mb/s)[194]。为实现高数据速率需采用多路并行连接,导致成本随容量线性增长。因此,对于5G及未来通信系统的高数据速率需求,铜缆技术成本过高且不再可行。

光纤是一种高数据速率解决方案,可支持超过10 Gbps的长距离通信链路。但光纤回传的部署有时受限于高昂成本(尤其在超密集环境中),且在偏远区域或特殊应用中可能因布线限制而无法实施[48][155]。在无法部署有线连接的场景中,无线技术成为铜缆和光纤的现实替代方案。FSO系统是光纤回传的理想替代方案,因其能提供高数据速率回传连接,且采用与光纤相似的光学收发器可实现相当的带宽能力[182]。FSO回传的容量与光纤相当,但部署成本显著更低[195][196],还具有部署便捷、无干扰、快速建网和维护成本低等优势[112][156][197]。然而,FSO系统性能易受大气湍流和恶劣天气(如雾、雪、沙尘)导致的信号衰减影响[112][198],且依赖视距传输路径,存在收发器对准问题。

相比之下,射频毫米波/微波链路虽不受雾雪沙尘严重影响,但在雨天性能大幅下降。因此,提升FSO回传链路可靠性的最佳方案是将其与射频系统整合,形成FSO/RF混合回传系统。这种混合系统能以FSO为主链路、RF为备用链路,实现高数据速率与高可靠性的结合。图11 展示了FSO/RF混合网络在基站回传、船舶通信、空间通信及偏远区域连接中的应用场景。该混合系统可替代光纤网络为复杂偏远区域提供服务,双网络并存显著提升了回传容量和可靠性。

图11. RF/FSO回程连接的应用场景。

与FSO/RF混合系统不同,光无线融合(OWI)致力于整合光纤与无线网络[199]-[202],通过结合光纤的高容量与无线网络的泛在移动性,为高数据速率无线应用提供支撑。在OWI系统中,无线接入技术提供泛在移动支持,而光纤网络承担大流量回传。如前所述,当光纤不可行时,FSO可发挥类似光纤网络的作用实现OWI目标。在FSO基础上加入射频系统(微波/毫米波链路)形成的FSO/RF混合回传,进一步确保了回传链路的可靠性。

H. 射频/光无线混合网络文献综述

**表VI和VII **总结了基于VLC的混合系统关键研究。这些混合系统由VLC网络与基于射频的WiFi、小蜂窝/毫微微蜂窝及宏蜂窝网络组成。许多研究者使用"RF"作为通用术语,而非特指WiFi或特定蜂窝网络,因此本文也沿用这一广义概念。此类混合系统的研究主要聚焦于容量提升、移动性支持、网络选择及可靠性问题。

表 VI 和 VII
基于可见光通信的混合系统当前研究趋势总结
混合类型参考文献目标工作重点贡献与研究方向
RF/VLC[7]提升系统容量与公平性负载均衡与功率分配提出功率分配算法、负载均衡技术及基于干扰的次优方法
[18]改善切换性能垂直切换研究分析信令开销、切换延迟和队列长度,并基于马尔可夫公式构建成本函数
[31]解决多址接入问题设计并行传输MAC协议构建信道预留模型并提供吞吐量分析理论
[32]提升能量效率开发能量收集模型推导SINR的概率密度函数(PDF)和累积分布函数(CDF),建立光能收集模型及保密中断概率表达式
[33]最大化功率效率优化功率与带宽分配开发联合功率与带宽分配算法
[34]实现无缝垂直切换支持无缝切换的混合RF/VLC系统实现研究Linux内核绑定驱动以实现双链路切换
[35]智能网络选择基于强化学习的室内网络选择方案开发细粒度网络选择模型,考虑上下行多样化业务需求与网络性能
[38]高效垂直切换(VHO)基于层次分析法的二人合作博弈模型提出考虑动态网络参数和实际业务偏好的多属性VHO算法
[47]构建多层网络开发基于ns3的新模块开发包含信道和调制模型的VLC模块
[48]高效VHO利用模糊逻辑降低分组传输延迟研究VHO算法并提出基于模糊逻辑的新算法
[49]改善覆盖范围分析功率与频谱需求通过关键系统参数分析研究混合系统的设计与开发方法
[50]实现可靠通信开发双跳多中继混合系统模型采用双跳并行中继混合模型提升连接性,并基于端到端SNR选择最佳中继
[53]实现高速率通信利用电力线网络设计混合网络通过电力线通信设计WiFi/VLC混合网络架构
[54]降低切换延迟分析能耗、切换延迟和分组队列长度基于马尔可夫决策过程建模,实现能耗与延迟需求的优化平衡
[127]扩展VLC覆盖范围设计支持能量收集的双跳RF/VLC异构系统分析光源电信号直流偏置,提出两种最优直流偏置设计方法
[132]吞吐量优化带宽聚合与调度算法基于队列分析和Lyapunov理论的调度策略、新分组传输协议及最优吞吐量分析
[135]最大化QoS链路选择基于QoS分析系统性能,并提出三种链路选择策略
[138]提升安全性最小化问题建模与迫零波束成形策略研究波束成形的电功率最小化问题,制定满足用户保密需求的功率分配算法
[139]优化资源利用率基于FOV、光强和基站高度的理论分析推导不同RF/VLC场景下的覆盖范围与速率理论模型
[140]最大化能量效率功率分配问题建模分析异构网络的功率与资源分配以最大化能量效率
[141]解决负载均衡问题在不牺牲公平性的前提下提升吞吐量通过集中式与分布式资源分配算法实现比例公平的协作负载均衡
[142]最大化吞吐量VLC下行与WiFi上行的混合方案实现VLC下行/WiFi上行的混合解决方案
[160]提升中断与误码性能推导中断概率的近似解析与渐近表达式考虑解码转发与放大转发方案扩展VLC覆盖,并基于中继与接收机位置随机性计算中断概率与平均误符号率(ASER)
[203]最大化能量效率评估能量效率收益分析功率与带宽分配及其对能量效率的影响
[204]设计基于SDN的架构多元件半球形灯泡设计以通过LED模块传输数据流提出灯泡结构建模及基于仿真的VLC架构评估,包含分区算法与覆盖模型
[205]最大化用户QoS考虑多用户移动场景与上下行的RF/VLC系统集成提出新VLC帧结构、多用户接入机制及水平/垂直切换协议,支持VLC异构网络中的多用户移动问题解决方案
[206]最大化频谱效率分析VLC系统在区域频谱效率(ASE)上的增益基于蒙特卡洛仿真分析RF与VLC系统的ASE
[207]快速切换混合通信系统实现细节提出基于决策与链路监测机制的快速切换方案,作用于网络层与数据链路层之间
Femtocell/VLC[39]高效资源分配解决移动终端(MT)资源分配问题的优化方案提出去中心化算法解决资源分配问题
[40]扩展覆盖范围VLC系统的动态光束与灯具控制利用多光源跟踪设备方向与位置,通过增加连接冗余缓解偏角性能退化
[134]智能网络选择针对动态环境与复杂业务需求的室内网络选择分析利用网络性能的上下行不对称特征设计细粒度效用模型,并提出基于业务类型-位置-时间信息的上下文感知学习算法
[162]延迟分析多场景下的延迟分析评估全向小蜂窝与定向小蜂窝带宽聚合的最小平均系统延迟增益,提出适用于异构网络的队列模型
[208]有效负载均衡基于最小距离的AP关联策略分析下行最小距离用户关联以提升频谱效率并实现高效负载均衡
Macrocell/VLC[41]最大化系统效用开发可扩展的负载均衡方案提出动态分配移动设备至对应AP的移动感知负载均衡方案,基于匹配理论将问题建模为“大学录取问题”
[42]提升定位性能三层VLC/WLAN/蜂窝网络中的定位研究多层级异构网络中提高定位准确性的概率定位方法
[51]低成本蜂窝基础设施链路分类提出混合TV RF广播/VLC下行链路与望远镜/相机接收器/LED阵列上行链路的分类系统
[55]改善系统性能面向5G/mmWave/VLC网络的异构蜂窝架构按覆盖范围与频谱分类网络,综述VLC下行通信技术

如前所述,VLC与LiFi系统存在差异。表VIII 展示了基于LiFi的混合网络研究,其架构同样包含LiFi与各类射频网络的组合。类似VLC研究,这些工作也集中于容量优化、移动性管理、网络选择及可靠性增强。

TABLE VIII
WiFi/LiFi混合系统当前研究趋势概述
参考文献研究目标工作重点贡献与研究方向
[44]提升吞吐量接入点选择提出考虑LiFi信道阻塞的混合LiFi/WiFi网络接入点分配方法
[45]物联网能效与绿色通信室内通信能量采集开发低干扰多址接入技术,采用正交沃尔什码与红/绿/蓝LED色光束实现传输与支撑
[46]接入点选择基于多臂老虎机理论的LED光源接入控制提出EXP3指数权重探索开发算法及线性规划学习技术,用于更新AP分配决策概率分布
[57]负载均衡考虑用户移动性与切换信令开销的负载均衡设计动态负载均衡方案,效用函数兼顾系统吞吐量与公平性,静态用户由LiFi服务,移动用户由WiFi接入点服务
[133]最大化吞吐量基于演化博弈论的负载均衡提出考虑信道阻塞、LiFi接收角度与用户速率需求的负载均衡算法,提升资源利用率与QoS
[136]切换概率建模切换概率模型分析采用马尔可夫链建立切换概率模型
[137]提升用户QoS水平考虑切换开销的动态负载均衡提出联合优化算法与分离优化算法,分别实现AP分配与资源分配的联合/独立优化
[143]增强吞吐量LiFi与WiFi网络间负载均衡展示混合系统的实践框架
[144]干扰管理多用户与小区间干扰提出盲干扰对齐技术以规避多用户及小区间干扰
[209]高能效室内无线接入网络基于照明需求的LiFi/WiFi网络使用方法论在满足用户需求与维持照明水平前提下,构建室内系统功耗最小化问题模型
[210]高效资源管理用户位置信息利用利用LiFi/WiFi接入点提供的定位信息开发改进的移动性管理系统
[211]降低切换开销用户至WiFi/LiFi接入点的合理分配基于模糊逻辑的动态切换方案,综合信道状态、用户速度与需求速率触发切换决策
[212]提升用户QoS混合网络系统选择标准提供统计QoS约束下的跨层混合系统方案,限定缓冲区溢出与延迟违反概率
[213]吞吐量分析光学干扰与LOS光信道阻塞研究邻近LiFi接入点光学干扰与LOS阻塞对吞吐量的影响,将负载均衡建模为优化问题
[214]增加用户容量考虑切换吞吐量损失的负载均衡将混合LiFi/WiFi网络移动性管理问题建模为负载均衡与切换的联合优化问题
[215]接入点选择网络选择算法开发模糊逻辑系统判定WiFi连接用户,讨论同构与异构网络差异,提出混合网络两阶段AP选择方法

近年来,混合RF/FSO(自由空间光通信)网络因能提供高速最后一英里连接而备受关注。同时,RF与FSO链路的共存可显著提升链路可靠性。多位学者提出了相关算法:Varshney与Jagannatham[154]设计了基于解码转发机制的MIMO RF/FSO认知无线电中继系统;Djordjevic等[196]采用Gamma-Gamma分布建立FSO大气湍流模型;Petkovic等[197]基于过时信道状态信息分析了双跳放大转发混合系统;Wu等[216]则研究了包含链路选择、功率分配和可靠性保障的数据传输方案。表IX和X 汇总了相关研究,其中射频网络涵盖微波与毫米波链路,这些系统既能实现远距离点对点通信,也可作为超高数据速率回程链路。

表IX和X
射频/自由空间光混合系统当前研究趋势概述
领域参考文献目标工作重点贡献与研究方向
空间通信[59]吞吐量最大化车载自组织网络开发分布式信道分配和速率控制算法,采用交替乘子检测法确保吞吐量和容量满意度。
[108]寻找最优传输功率射频同频干扰对混合网络的影响推导性能参数的闭式表达式,获得最优功率分配方案。
[112]实现可靠链路连接研究射频衰落与自由空间光衰落(含瑞利和伽马-伽马统计的大气湍流)为避免不必要切换,首先将单FSO链路作为混合系统开发以适应恶劣天气。针对不同系统性能指标进行数学分析。
[149]提升端到端性能考虑宏小区与微小区的级联系统设计提出多种链路分配策略,分析不同延迟需求和信令开销下的吞吐量。
[150]性能分析研究平均符号错误率(ASER)性能推导信噪比(SNR)的矩生成函数(MGF)及不同调制方案的ASER。
[151]系统性能优化基于机会调度的传输性能分析考虑指向误差效应和SNR范围,推导多种性能指标的闭式表达式。
[152]成本最小化与可扩展性提升研究指向误差(收发端错位)的影响毫米波射频信道采用莱斯分布建模,FSO信道采用广义Malaga分布建模,量化错位导致的指向误差效应。
[153]吞吐量最大化基于正交频分多址(OFDMA)的框架提出多用户OFDMA框架下的资源分配方案,包括功率与子载波分配。
[154]增强可靠性基于解码转发(Df)的MIMO混合系统假设射频链路服从Nakagami-m衰落、FSO链路存在光学损伤,推导中断概率的闭式表达式。
[156]抑制多径衰落与大气湍流含可变增益中继的双跳混合系统针对多发射多天线系统,推导累积分布函数(CDF)及性能指标表达式,分析多径衰落与大气湍流效应。
[157]吞吐量优化基于信道状态的网络控制算法分析协议模型与复杂物理模型的链路分配,研究混合整数线性规划的吞吐量最大化问题。
[194]经济高效的解决方案融合光纤与混合RF/FSO链路研究基站通过光纤或混合链路互连时的成本最小化问题。
[195]端到端中断性能分析双跳混合系统的信道建模假设各链路为瑞利衰落射频和M分布FSO信道,推导中断概率闭式表达式。
[196]改善中断性能考虑过时信道状态信息(CSI)和FSO收发错位推导中断概率与平均误码率表达式,用于优化发射端光束腰半径。
[197]提升可靠性基于过时CSI的中继选择针对部分放大转发中继,推导多种性能指标的闭式表达式。
[198]确保接收端恒定SNR基于截断信道反转的功率自适应建立两种功率适应策略下的中断概率数学模型。
[216]可靠性增强链路选择与功率分配算法针对不同链路选择模式开发功率分配的数学表达式与算法。
[218]优化功率分配与保密性能多用户单输入多输出(SIMO)场景的混合网络给出中断概率、符号错误概率和信道容量的闭式解析表达式,研究系统保密性能。
[219]服务质量(QoS)提升混合网状网络的拓扑控制提出通过自适应调整RF/FSO发射功率和FSO光束宽度来改善端到端延迟与吞吐量的新方案。
[220]吞吐量与中断性能提升基于完美CSI的性能分析推导消息解码概率、吞吐量和中断概率的闭式表达式。
[221]高效链路质量调度混合系统的多用户分集提出点对多点混合接入点架构,支持多FSO/RF用户,设计调度算法并理论分析SNR、中断概率与平均误码率。
[222]大气与指向误差效应分析含指向误差的渐近混合链路利用Meijer-G函数推导混合链路的CDF、PDF、MGF及矩的闭式表达式,建立性能指标解析模型。
[223]端到端性能提升用户数据流解码基于Meijer-G函数推导多种性能指标的解析表达式。
[224]性能研究双广义伽马湍流与Nakagami-m衰落评估混合系统在指向误差和Nakagami-m衰落下的精确/近似性能指标表达式。
[225]容量提升基于固定增益放大转发的中继系统通过有限幂级数推导SNR的CDF/PDF/MGF,进而导出多种性能指标表达式。
[226]吞吐量优化双独立并行信道建模提出带/不带带宽约束的吞吐量最大化链路自适应算法。
[227]克服FSO链路弱点湍流与指向误差下的中断概率建立不同信道条件下的误码率与中断概率数学模型。
[228]最优中继选择并行混合系统的吞吐量最大化推导不同缓冲条件下中继的最优选择方法。
[229]吞吐量优化全天气条件下的吞吐量最大化算法分析低密度奇偶校验编码机制对算法性能的影响。
[230]容量提升硬件损伤效应推导不同SNR下性能参数的数学表达式,量化系统增益损失。
水下通信[184]理解硬件/软件架构水下光声混合网络协议提出基于超声波与光学通信的水下传感器网络系统架构。
[186]能量收集水声-光混合无线传感器网络的定位技术结合声学/光学通信的接收信号强度(RSS)测量,提出噪声环境下的节点定位方案。
[187]扩展通信范围与提升速率水声/光混合通信架构开发兼具高数据率、低延迟和强鲁棒性的混合水下通信系统。
[189]恶劣环境通信保障声学/光学混合方法详细阐述水下混合通信信道特性。
[190]链路设计基于声学/光学的混合链路设计通过信道建模与SNR分析确定声学/光学链路的性能限制因素。
[191]突破声学信道带宽限制水下信号衰减提出声学辅助光学对准的混合方案,利用光学通信克服声学信道带宽限制。

电力线通信(PLC)技术凭借其泛在性被引入OWC网络,用于光源间数据传输。表XI 显示,目前PLC混合系统的研究较少,主要集中在功率与干扰管理领域。

表XI
基于PLC的混合系统当前研究趋势总结
参考文献研究目标工作重点贡献与研究方向
[43]最小化功耗与射频无线链路并行的电力线通信/可见光通信混合系统的功率分配问题分析了射频链路与PLC/VLC链路并行的场景,构建了传输功率最小化问题的数学模型。
[56]误码率提升改进调制技术提出了一种根据混合PLC/VLC的5G通信系统信道需求调整调制技术的方法。
[163]PLC/VLC信道分析混合级联PLC/VLC信道的频率响应测量提供了混合PLC/VLC信道的整体特性描述、建模与频谱分析。
[231]干扰抑制开发VLC/PLC混合系统的分析框架研究了PLC/VLC系统间信号转换的不同方法,并提出利用频率选择性的多种子载波分配方案,包括OFDMA和OFDM时分多址接入技术。
[232]突破发射功率限制PLC系统中多用户OFDMA的资源分配提出在子载波和功率约束条件下,通过联合优化资源分配实现PLC系统吞吐量最大化的方案。
[233]增强移动性支持利用PLC与VLC信道的统计特性在放大转发中继存在的情况下,研究了室内级联PLC/VLC系统的性能表现。
[234]误码率提升研究OFDM固有削波特性以抑制PLC信道中的脉冲噪声通过利用埃尔米特对称性,设计了一种结合PLC与VLC技术的OFDM混合系统。
[235]误码率提升研究混合协作PLC/VLC系统推导了端到端等效信噪比的累积分布函数和概率密度函数的闭式表达式。

性能验证是评估系统有效性的关键环节。如 表XII 所示,研究者采用不同指标(如系统容量、链路可靠性)并通过仿真、数值分析或实验进行验证。其中RF/VLC与RF/LiFi系统侧重容量优化,而RF/FSO系统更关注可靠性。

表XII
混合系统所用性能指标汇总
类型指标参考文献混合类型
系统容量吞吐量[7], [31], [34]射频/可见光通信
[39]毫微微蜂窝/可见光通信
[44], [46], [137], [143], [213], [214]WiFi/LiFi
[41]宏蜂窝/可见光通信
[59], [149], [152], [153], [156], [157], [198], [220], [226], [228]射频/自由空间光通信
用户数据速率[36], [49], [127]射频/可见光通信
[141], [142]WiFi/可见光通信
[231]电力线通信/可见光通信
[45], [57], [143], [144], [212], [215]WiFi/LiFi
[211]射频/LiFi
用户数量[135]射频/可见光通信
遍历容量[112], [151], [218], [222], [224], [230]射频/自由空间光通信
可靠性误码率(BER)[37]WiFi/可见光通信
[45]WiFi/LiFi
[110], [112], [152], [156], [197], [221], [222], [224], [225], [228]射频/自由空间光通信
符号错误率(SER)[47], [160]射频/可见光通信
[150], [151], [222], [223], [230]射频/自由空间光通信
丢包率[18], [47], [207]射频/可见光通信
定位误差[42]可见光通信/WLAN/蜂窝
中断概率[32], [36], [50], [160], [236]射频/可见光通信
[108], [110]–[112], [151], [152], [154], [156], [195], [197], [198], [216], [217], [220]–[225], [227], [230]射频/自由空间光通信
数据包延迟[18], [48]射频/可见光通信
[212]WiFi/LiFi
链路阻塞概率[141]WiFi/可见光通信
[151], [219]射频/自由空间光通信
信号质量接收信号强度(RSS)[53]WiFi/可见光通信
[40]毫微微蜂窝/可见光通信
[229]射频/自由空间光通信
信干噪比(SINR)[47], [139], [204]射频/可见光通信
[156], [198], [225]–[227], [230]射频/自由空间光通信
覆盖概率[139]射频/可见光通信
切换性能切换延迟[41]宏蜂窝/可见光通信
切换次数[160]射频/可见光通信
[214]WiFi/LiFi
切换概率[136]WiFi/LiFi
功率管理功耗[7], [135], [138]射频/可见光通信
[209]WiFi/LiFi
[43]电力线通信/可见光通信/射频
[108], [216], [218], [220], [228], [229]射频/自由空间光通信
功率/能量效率[33], [140], [203]射频/可见光通信
资源分配公平性[141]WiFi/可见光通信
[44]WiFi/LiFi
[41]宏蜂窝/可见光通信
频谱效率[206]射频/可见光通信
[208]毫微微蜂窝/可见光通信
收益比[46]WiFi/LiFi
其他通信距离[127]射频/可见光通信
平均奖励[134]WiFi/可见光通信
队列长度[18]射频/可见光通信
保密性[138]射频/可见光通信
回程成本[194]射频/自由空间光通信

网络选择策略对降低成本和保障用户体验质量(QoE)至关重要。表XIII 显示,模糊逻辑是混合系统中最常用的选择方法。例如:[35]采用强化学习应对动态环境;[134]基于上下文感知设计细粒度效用模型;[48]结合射频与光无线系统优势;[215]采用两阶段模糊逻辑接入点选择;[135]则考虑QoS保障与跨层优化。

表XIII
混合系统中网络选择方法概述
混合类型方法/技术参考文献
RF/VLC(射频/可见光通信)队列分析[132], [135]
基站密度、发射功率与视场角[139]
模糊逻辑[48]
信道条件[49]
强化学习[35], [148]
马尔可夫链状态[42]
有效容量[212]
WiFi/LiFi指数加权算法[46]
模糊逻辑[215]
RF/FSO(射频/自由空间光通信)天气条件[112]
信干噪比(SINR)计算[217]
RF与FSO链路的信道状态信息[149]
图论[194]
RF的物理干扰模型[157]

实验验证方面(表XIV),目前仅有少量研究对混合RF/光系统进行实际测试。在250项相关文献中,明确提及实施方案的占比较少。

表XIV
已实现或实验验证的混合系统简要概述
参考文献混合类型实施方案概要效果影响
[34]射频/可见光通信为可见光通信链路状态实施链路监控协议,并持续传递至绑定驱动模块进行决策。成功验证了切换性能
[53]WiFi/可见光通信通过电力线构建WiFi与可见光通信融合的测试平台。该测试平台可用于混合系统的后续扩展研究
[132]射频/可见光通信基于三种实验场景(单发射器单节点、双发射器单节点、双发射器双节点)展示原型测试床数值结果整体吞吐量与链路可靠性显著提升
[142]射频/可见光通信实现可见光通信下行链路与WiFi上行链路集成的混合接入系统可见光通信热点有效缓解了射频信道的竞争与干扰,与WiFi形成互补
[143]WiFi/光保真通信构建混合系统实践架构,实施多种信道聚合技术静态用户由光保真通信服务为WiFi创造分流机会,系统整体吞吐量同步提升
[207]射频/可见光通信在混合系统中实现用户数据报协议传输,分析丢包率及可见光向射频切换过程所实现的垂直切换机制响应迅速,测试平台可继续用于混合系统概念验证

关于链路共享策略(表XV),双网络混合系统可形成四条潜在链路(上下行×2)。虽然多数文献未明确讨论该问题,但需注意:射频在上下行均表现良好,而VLC/LiFi因终端设备LED功率限制,上行通信能力较弱(但技术上可行)[53][134]。

表XV
网络共享方法概述
混合类型上行链路下行链路用户数据报协议(UDP)相关文献
RF/VLC射频(RF)可见光通信(VLC)[142], [208], [237], [238]
WiFi/VLCWiFi可见光通信(VLC)[32], [47], [53], [55], [205], [206], [210], [231]
WiFi/LiFiWiFi光保真(LiFi)[46], [143], [238]
RF/VLC射频(RF)射频与VLC混合[31], [132], [212]
小基站/LiFi小基站光保真(LiFi)[208]
RF/OCC射频(RF)射频与OCC混合[51]
RF/VLC, RF/LiFi上下行链路无差异[18], [39], [41], [42], [57], [111], [137], [140], [141]

光/光无线混合网络

不同的光无线技术展现出不同的特性。因此,光/光无线混合系统的规划旨在提升链路可靠性并满足用户的服务质量(QoS)需求。据我们所知,目前尚未有关于光/光无线混合系统的重大研究。本节简要讨论此类混合系统的几种可能示例。

混合LiFi/OCC和VLC/OCC是面向室内用户的光/光无线混合解决方案。VLC和LiFi提供相对较高的数据速率,但与OCC系统相比,其抗干扰能力较弱[30]。因此,这些是光无线部署的有效方法,既能避免VLC或LiFi的干扰效应,又能弥补OCC系统数据速率较低的不足。混合LiFi/OCC、VLC/OCC和FSO/OCC是面向车联网(V2X)通信的光/光无线混合解决方案,可克服单一技术的局限性。OCC在V2X通信中能提供相对更长的通信距离,且链路稳定性随距离增加而保持良好;FSO则适用于超长距离V2X通信,但其性能易受户外大气条件影响,且需收发端精确对准。

VLC和LiFi系统正广泛应用于室内外定位与导航。OCC的定位分辨率优于基于光电二极管(PD)的VLC和LiFi[103],因此混合LiFi/OCC系统也有望成为提升定位性能的潜在方案。

图12 展示了FSO/VLC、FSO/OCC和LiFi/OCC混合系统的应用场景[61]–[63][179][237][239][240]。

图12. 混合FSO/VLC、LiFi/OCC及FSO/OCC系统的应用场景。

图中,FSO/VLC混合系统提供“最后一公里”与“最后一米”无线连接,其中FSO作为回程链路,VLC网络则用于用户接入;LiFi/OCC混合系统示例说明如何用单个LED发射器同时支持OCC与LiFi功能;FSO/OCC混合系统则用于车对车(V2V)通信场景——短距通信由OCC实现,而长距通信依赖FSO系统。这种混合设计既满足用户需求,又增强了可靠性。

光/光混合系统最重要的优势在于链路可靠性的提升。混合LiFi/OCC、VLC/OCC和FSO/OCC显著改善了链路稳定性:双网络架构可降低LiFi/VLC的干扰影响,同时弥补OCC的低数据速率缺陷。在V2X通信中,链路可靠性是关键问题,而光/光混合系统能有效解决该问题。混合光/光网络的链路选择需综合考虑干扰效应、数据速率需求、通信距离和业务类型等参数。此外,FSO系统中收发端光链路的精确对准是车联网混合方案的重要考量因素。表XVI 列出了光/光混合系统的相关研究。

表XVI
光学/光学混合系统当前研究趋势概述
混合类型参考文献研究重点贡献与研究方向
VLC/OCC[61]使用同一LED发射器实现VLC与OCC系统提出一种可通过同一物理传输通道,以不同数据速率同时向VLC系统的光电探测器与OCC系统的摄像头传输数据的系统。
LiFi/OCC[62]网络分配与链路切换开发基于模糊逻辑的混合系统网络分配机制,并提出动态链路切换技术以实现网络间高效切换管理。
FSO/VLC[179]混合FSO/VLC系统开发与演示通过多频带无载波幅度相位调制(m-CAP)方案,评估不同FSO/VLC链路长度与m-CAP参数下的系统性能表现(以数据速率为指标)。
FSO/VLC[237]面向空天地海一体化通信架构(尤其适用于射频敏感或高安全性环境)的FSO/VLC异构混合光无线网络定义了混合网络协调器及其部署实施方案,设计三大核心网络层机制:用户识别定位、移动性与切换控制、路由与流量管理,并展示了FSO/VLC异构互联实验成果。
FSO/VLC[239]混合OCC/Li-Fi系统的架构设计与网络选择应用模糊逻辑方法为LiFi与OCC共用的LED发射器选择最优网络。
VLC/FSO/VLC[240]三跳混合VLC/FSO/VLC系统性能分析推导系统中断概率的闭合表达式,并通过渐近中断概率表达式研究系统行为特性。

未来挑战与经验总结

A. 挑战与待解决的研究问题

为确保各类混合系统成功部署,需高效解决若干问题。以下简要讨论光无线混合系统面临的重要挑战及未来方向:

网络选择:混合系统中,高效的网络选择技术至关重要。尽管混合无线网络提升了系统性能,但异构无线技术的融合使得接入网络选择过程复杂化。这一问题在异构网络中始终比同构网络更棘手。同构网络中,简单的选择方法是优先选择信号最强的网络[215]。然而,光无线混合系统包含两种及以上异构技术,且这些技术可能在射频(RF)与光无线特性上存在差异。多因素交织使得网络选择极具挑战性。最优选择随环境变化,为保障用户高质量体验(QoE),需采用细粒度的智能选择方法[134]。不同光无线网络的选网标准各异,与现有射频网络差异显著。混合系统中需综合考虑异构参数,这在动态未知环境中实现实际部署是一大挑战。参数精选与高效策略对发挥混合网络优势至关重要,同时还需兼顾计算时间以降低延迟。尽管已有学者在理论研究中探讨此问题,但射频/光及光/光混合网络的实际部署仍存挑战。

接入协议:用户移动性支持是未来无线系统的关键。用户在室内外环境中移动,使得定位移动接收端及协调LED发射器与射频基站(RF-BS)成为接入协议的核心难题[205]。现有研究多针对单网络场景提出CSMA/CA协议[241],而非射频/光无线混合网络。因此,需进一步研究混合系统的CSMA/CA协议设计。此外,射频/光及光/光混合网络中上行链路介质访问控制协议的设计仍有广阔探索空间。

异构接收器类型:混合网络中支持异构接收器尤为重要。系统中两类网络的接收器需同时工作,但射频与光接收器的特性差异显著。如何将射频与光系统整合为混合网络,并实现多系统同步数据传输是一大挑战。

切换(Handover):切换是混合系统的重要环节。尽管射频通信中已有高效垂直切换(VHO)方案,但用户随机移动导致光信道特性使得射频与光无线网络间的切换比全射频环境更复杂[48]。异构光与射频网络的物理层及数据链路层机制差异,为混合系统的移动性管理带来挑战。合适的切换决策标准与算法仍是光无线混合网络的研究重点,需解决用户移动性对信道估计与切换的影响。光无线系统易受障碍物遮挡,这增加了切换时的网络定位难度。为满足5G要求,切换需快速完成。射频/VLC及射频/LiFi混合系统中,用户与中心单元的信令交换时间因算法不同在30毫秒至3000毫秒间波动[39][141],且传输损耗可能加剧延迟。此外,LiFi与VLC在室内的小覆盖范围会导致频繁切换,避免非必要切换同样重要。

负载均衡:混合网络的高效负载均衡是技术难点。首要挑战是如何在异构接入技术间分配用户。最优用户关联需解决联合关联与资源分配问题[208]。负载均衡机制需在通话会话中周期性执行。用户移动时可能需切换至更优接入点(AP)并触发切换[211],因此混合网络的动态负载均衡极具挑战性。

高容量回程网络:混合网络支持高数据率应用与海量连接,导致接入网络总吞吐量激增。如何构建超高容量回程网络仍是待解难题。

数据传输无缝导向:混合系统存在多发射器,因通信环境变化、数据类型及用户移动等因素,数据传输路径需动态调整。接入点分配与数据无缝导向成为突出挑战,需重点关注数据丢失最小化、发射器优选及延迟控制。

异构回程网络同步:混合系统中,各网络可能采用相同或不同回程方式(如室内毫微微蜂窝与LiFi可共用以太网/CATV回程,而室内LiFi与室外宏蜂窝可能分别采用以太网与光纤回程)。不同回程网络间的流量同步需精确协调,且切换时需平滑过渡。移动网络的回程指向需持续调整,这一技术尚未有研究涉及,未来需重点突破。

软件定义网络(SDN)控制:高效管理密集光无线混合系统需依赖SDN技术。SDN通过中央控制器集中管控网络[242],其三层架构(应用层、控制层、基础设施层)可支持流量控制、安全管理等混合光无线通信(OWC)策略[243][244]。北向API连接应用与控制层,南向API向基础设施层设备下发转发指令。SDN技术可通过流量调控降低能耗,并为虚拟化网络功能提供支持。

跨层设计:现有射频/光混合系统研究多聚焦物理层[135],鲜少关注数据链路层指标。随着高可靠低延迟服务需求激增,需联合考虑物理层与数据链路层的QoS指标。跨层性能分析工具对解决混合系统问题至关重要,但目前光无线系统的相关研究仍不足。

光系统上行链路限制:受限于移动设备能耗、窄光束对准要求及可见光对人眼的影响[128],光无线混合系统目前仅适合作为射频系统的下行补充技术。射频/VLC及射频/LiFi混合系统中实现光上行链路支持仍面临实际困难。

光/光混合系统的调制技术:LiFi与VLC的光相机通信(OCC)调制技术差异显著。因传统相机帧率限制,OCC无法支持高速调制,导致同一光源难以同时服务两种光无线系统,调制方案设计成为挑战。

混合RF/FSO中继系统性能提升:大气湍流与指向误差会导致双跳混合RF/FSO系统出现高误码率或容量受限[149]。虽可通过增加发射功率缓解,但可能影响保密性能,故高效功率分配是关键。

水下通信:水下混合声/光与光/射频网络的研究尚处起步阶段,需深入分析声光模式的自适应切换机制[185]。

混合传输:当前LED发射器用于LiFi/OCC或VLC/OCC混合系统时,因调制带宽差异及系统复杂度增加,同一LED难以同步服务两系统。此领域研究仍处初级阶段,未来需重点突破。

B. 经验总结

不同无线技术各具优势与局限。射频与光信号互不干扰,且性能特性互补。部分光无线技术(如LiFi与OCC)在特定指标上亦呈现对立特征,这促使混合系统成为突破单技术局限、满足5G及未来需求的关键。射频系统优势在于广覆盖、灵活性与非视距(NLOS)支持,但带宽稀缺与低吞吐量是主要短板;光无线系统则以大带宽、高吞吐量见长,但受限于NLOS支持弱、移动性差及大气影响。混合系统能有效整合双方优势,适用于室内外及水下场景,提升吞吐量、可靠性、安全性与能效。

混合系统可灵活组合网络,如双网并行、主备模式、单跳/多跳通信等。用户上下行可由不同网络分担或完全分离服务(表XV总结了典型共享方案)。选网标准包括业务类型、链路方向、通信距离、视距条件、安全等级及移动性需求等。

室内混合系统主要用于流量卸载、无缝移动及干扰抑制,而室外系统侧重链路可靠性提升与大气效应克服。混合RF/FSO回程能抵御雨雪雾尘干扰,显著降低射频系统干扰。光/光混合系统则以提升可靠性为主(表XII综述了相关性能研究成果)。

移动网络部署是混合系统的最大挑战,需同时解决接入与回程的动态调整及户外环境影响。若用户数据需经异构回程传输,技术难度进一步增加。

不同混合系统的目标与问题各异。射频/VLC与射频/LiFi系统以提升吞吐量为核心[7][31][34]等文献,相关研究涵盖切换优化[18][34]、能效提升[32][33]、智能选网[35][134]、覆盖扩展[40][49]、中断概率降低[160]等方向。基于OCC的混合系统研究尚少[102][148],未来需加强选网、切换与安全研究。混合RF/FSO系统通过大气效应抑制提升可靠性[55][58][147]等文献,研究重点包括最优功率分配[108]、湍流缓解[156][222]及中继选择[228]等。光/光混合系统研究处于萌芽期,光源复用技术是潜在突破口。

当前多数研究仅限理论分析,实验验证不足。光无线混合系统领域虽已解决部分技术难题,但仍存大量待探索空间。

结论

近年来,由于射频(RF)系统无法满足5G及未来通信系统日益增长的多样化需求,不同的光无线通信(OWC)技术已成为无线通信系统的重要组成部分。OWC的卓越特性使其成为射频无线通信系统极具前景的互补选择。通过联合部署两种或多种特性各异的网络,可以克服单一网络的局限性。因此,由光无线系统与射频或其他光系统组成的混合系统能够解决单一射频或光无线网络的诸多不足。目前,针对不同混合无线网络应用中的剩余挑战,相关研究正在进行中。

本综述论文探讨了光无线混合网络的关键研究问题,并分析了混合架构场景及其发展机遇。文章总结了当前关于射频/光、光/光以及声学/光无线混合网络系统的研究进展。针对不同混合系统组合,研究涵盖了基于射频的宏蜂窝、小蜂窝、WiFi和蓝牙低功耗(BLE)技术,以及基于光通信的可见光通信(VLC)、光保真(LiFi)、光相机通信(OCC)和自由空间光通信(FSO)技术。文中讨论了这些混合系统带来的机遇,以及网络架构、网络选择和应用场景。研究涉及室内、车载、空间、电子健康和水下等多种应用场景。此外,论文还探讨了不同混合网络系统的关键研究方向,并简要指出了在5G及未来通信和物联网(IoT)范式中成功部署混合网络系统需解决的重要挑战。

最后,本文强调:通过加强异构网络间的紧密集成,并针对尚未完全解决的创新研究趋势展开探索,可进一步提升光无线混合系统的性能。本综述论文有助于理解不同光无线混合系统的研究贡献,并有望推动未来5G及超5G(5GB)通信系统中,将OWC系统作为射频技术的重要互补方案而成功部署的进一步努力。

参考文献

[1] M. Shafi et al., “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1201–1221, Jun. 2017.
[2] M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, “5G backhaul challenges and emerging research directions: A survey,” IEEE Access, vol. 4, pp. 1743–1766, 2016.
[3] D. Zhang, Z. Zhou, S. Mumtaz, J. Rodriguez, and T. Sato, “One integrated energy efficiency proposal for 5G IoT communications,” IEEE Internet Things J., vol. 3, no. 6, pp. 1346–1354, Dec. 2016.
[4] J. G. Andrews et al., “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.
[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A survey on enabling technologies, protocols, and applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2347–2376, 4th Quart., 2015.
[6] A. Ijaz et al., “Enabling massive IoT in 5G and beyond systems: PHY radio frame design considerations,” IEEE Access, vol. 4, pp. 3322–3339, 2016.
[7] M. Obeed, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Joint optimization of power allocation and load balancing for hybrid VLC/RF networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 10, no. 5, pp. 553–562, May 2018.
[8] Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1738–1749, Sep. 2015.[9] H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag., vol. 49, no. 9, pp. 56–62, Sep. 2011.
[10] T. Koonen, “Indoor optical wireless systems: Technology, trends, and applications,” J. Lightw. Technol., vol. 36, no. 8, pp. 1459–1467, Apr. 15, 2018.
[11] P. J. Cruz, C. Hintz, J. West, and R. Fierro, “Optical wireless communications for heterogeneous DARS,” in Distributed Autonomous Robotic Systems. Cham, Switzerland: Springer, 2018, pp. 219–233.
[12] Z. Xu and R. M. Sadler, “Ultraviolet communications: Potential and state-of-the-art,” IEEE Commun. Mag., vol. 46, no. 5, pp. 67–73, May 2008.
[13] M. Uysal and H. Nouri, “Optical wireless communications—An emerging technology,” in Proc. Int. Conf. Transp. Opt. Netw., Jul. 2014, pp. 1–7.
[14] A. C. Boucouvalas, P. Chatzimisios, Z. Ghassemlooy, M. Uysal, and K. Yiannopoulos, “Standards
for indoor optical wireless communications,” IEEE Commun. Mag., vol. 53, no. 3, pp. 24–31, Mar. 2015.
[15] H. Chen, H. P. A. van den Boom, E. Tangdiongga, and T. Koonen, “30-Gb/s bidirectional transparent optical transmission with an MMF access and an indoor optical wireless link,” IEEE Photon. Technol. Lett., vol. 24, no. 7, pp. 572–574, Apr. 1, 2012.
[16] D. K. Borah, A. C. Boucouvalas, C. C. Davis, S. Hranilovic, and K. Yiannopoulos, “A review of
communication-oriented optical wireless systems,” EURASIP J. Wireless Commun. Netw., vol. 1, no. 1, pp. 1–28, Mar. 2012.
[17] J. B. Carruthers, “Wireless infrared communications,” in Wiley Encyclopedia of Telecommunications. New York, NY, USA: Wiley, 2003.
[18] F. Wang, Z. Wang, C. Qian, L. Dai, and Z. Yang, “Efficient vertical handover scheme for heterogeneous VLC-RF systems,” IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 12, pp. 1172–1180, Dec. 2015.
[19] S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced Optical Wireless Communication Systems. Cambridge, U.K.: Cambridge Univ. Press, 2012.
[20] J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb. 1997.
[21] IEEE Standard for Local and Metropolitan Area Networks—Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Standard 802.15.7-2011, Sep. 2011, pp. 1–309.
[22] D. Kedar and S. Arnon, “Urban optical wireless communication networks: The main challenges and possible solutions,” IEEE Commun. Mag., vol. 42, no. 5, pp. 2–7, May 2004.
[23] L. Grobe et al., “High-speed visible light communication systems,” IEEE Commun. Mag., vol. 51, no. 12, pp. 60–66, Dec. 2013.
[24] D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,”
Opt. Exp., vol. 23, no. 2, pp. 1627–1637, Jan. 2015.
[25] F. Yang and J. Gao, “Dimming control scheme with high power and spectrum efficiency for visible light communications,” IEEE Photon. J., vol. 9, no. 1, pp. 1–12, Feb. 2017.
[26] H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightw. Technol., vol. 34, no. 6, pp. 1533–1544, Mar. 15, 2016.
[27] Z. Ghassemlooy, P. Luo, and S. Zvánovec, “Optical camera communications,” in Optical Wireless
Communications. Cham, Switzerland, Springer, Aug. 2016, pp. 547–568.
[28] D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the art,” IEEE Commun. Surveys Tuts., vol. 17, no. 3, pp. 1649–1678, 3rd Quart., 2015.
[29] Y.-Y. Zhang, H.-Y. Yu, J.-K. Zhang, Y.-J. Zhu, J.-L. Wang, and T. Wang, “Space codes for MIMO
optical wireless communications: Error performance criterion and code construction,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 3072–3085, May 2017.
[30] M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, “A comparative survey of optical wireless technologies: Architectures and applications,” IEEE Access, vol. 6, pp. 9819–9840, 2018.
[31] W. Guo, Q. Li, H.-Y. Yu, and J.-H. Liu, “A parallel transmission MAC protocol in hybrid VLC-RF network,” J. Commun., vol. 10, no. 1, pp. 80–85, Jan. 2015.
[32] G. Pan, J. Ye, and Z. Ding, “Secure hybrid VLC-RF systems with light energy harvesting,” IEEE
Trans. Commun., vol. 65, no. 10, pp. 4348–4359, Oct. 2017.
[33] M. Kafafy, Y. Fahmy, M. Abdallah, and M. Khairy, “A novel bandwidth and power allocation scheme for power efficient hybrid RF/VLC indoor systems,” Phys. Commun., vol. 31, pp. 187–195, Dec. 2018.
[34] M. S. Saud, H. Chowdhury, and M. D. Katz, “Heterogeneous softwaredefined networks: Implementation of a hybrid radio-optical wireless network,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), San Francisco, CA, USA, Mar. 2017, pp. 1–6.
[35] C. Wang, G. Wu, Z. Du, and B. Jiang, “Reinforcement learning based network selection for hybrid VLC and RF systems,” in Proc. Int. Conf. Smart Mater. Intell. Manuf. Autom. (SMIMA), Nanjing, China, May 2018, pp. 1–5.
[36] D. A. Basnayaka and H. Haas, “Hybrid RF and VLC systems: Improving user data rate performance
of VLC systems,” in Proc. IEEE 81st Veh. Technol. Conf. (VTC Spring), Glasgow, U.K., May 2015, pp.
1–5.
[37] H. Chowdhury and M. D. Katz, “Cooperative data download on the move in indoor hybrid (radio-optical) WLAN-VLC hotspot coverage,” Trans. Emerg. Telecommun. Technol., vol. 25, no. 6, pp. 666–677, Jun. 2014.
[38] S. Liang, Y. Zhang, B. Fan, and H. Tian, “Multi-attribute vertical handover decision-making algorithm in a hybrid VLC-femto system,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1521–1524, Jul. 2017.
[39] F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delayguarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 1020–1034, Feb. 2015.
[40] M. B. Rahaim, J. Morrison, and T. D. C. Little, “Beam control for indoor FSO and dynamic dual-use VLC lighting systems,” J. Commun. Inf. Netw., vol. 2, no. 4, pp. 11–27, Dec. 2017.
[41] L. Li, Y. Zhang, B. Fan, and H. Tian, “Mobility-aware load balancing scheme in hybrid VLC-LTE
networks,” IEEE Commun. Lett., vol. 20, no. 11, pp. 2276–2279, Nov. 2016.
[42] S. Büyükçorak and G. K. Kurt, “A Bayesian perspective on RSS based localization for visible light communication with heterogeneous networks extension,” IEEE Access, vol. 5, pp. 17487–17500, 2017.
[43] M. Kashef, M. Abdallah, and N. Al-Dhahir, “Transmit power optimization for a hybrid PLC/VLC/RF communication system,” IEEE Trans. Green Commun. Netw., vol. 2, no. 1, pp. 234–245, Mar. 2018.
[44] X. Wu and H. Haas, “Access point assignment in hybrid LiFi and WiFi networks in consideration
of LiFi channel blockage,” in Proc. IEEE 18th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Jul. 2017, pp. 1–5.
[45] P. K. Sharma, Y.-S. Jeong, and J. H. Park, “EH-HL: Effective communication model by entegrated EH-WSN and hybrid LiFi/WiFi for IoT,” IEEE Internet Things J., vol. 5, no. 3, pp. 1719–1726, Jun.
2018.
[46] J. Wang, C. Jiang, H. Zhang, X. Zhang, V. C. M. Leung, and L. Hanzo, “Learning-aided network association for hybrid indoor LiFi-WiFi systems,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3561–3574, Apr. 2018.
[47] A. Aldalbahi, M. Rahaim, A. Khreishah, M. Ayyash, and T. D. C. Little, “Visible light communication module: An open source extension to the NS3 network simulator with real system validation,” IEEE Access, vol. 5, pp. 22144–22158, 2017.
[48] J. Hou and D. C. O’Brien, “Vertical handover-decision-making algorithm using fuzzy logic for the integrated radio-and-OW system,” IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 176–185, Jan.
2006.
[49] D. A. Basnayaka and H. Haas, “Design and analysis of a hybrid radio frequency and visible light communication system,” IEEE Trans. Commun., vol. 65, no. 10, pp. 4334–4347, Oct. 2017.
[50] A. Vats, M. Aggarwal, and S. Ahuja, “Modeling and outage analysis of multiple relayed hybrid VLC-RF system,” in Proc. Int. Conf. Comput. Commun. Electron. (Comptelix), Jaipur, India, Jul. 2017, pp. 254–259.
[51] B. Gulbahar and S. Sencan, “Wireless Internet service providing for 5G with hybrid TV broadcast and visible light communications,” in Proc. Wireless Days, Porto, Portugal, Mar. 2017, pp. 66–69.[52] M. N. Khan, A. Rafay, S. O. Gilani, and M. Jamil, “Link adaptation for maximizing MI of hybrid optical/RF communication system,” Procedia Comput. Sci., vol. 110, pp. 282–289, Jul. 2017.
[53] P. Hu, P. H. Pathak, A. K. Das, Z. Yang, and P. Mohapatra, “PLiFi: Hybrid WiFi-VLC networking
using power lines,” in Proc. 3rd Workshop Visible Light Commun. Syst., Oct. 2016, pp. 31–36.
[54] F. Wang, Z. Wang, C. Qian, L. Dai, and Z. Yang, “MDP-based vertical handover scheme for indoor VLC-WiFi systems,” in Proc. Opto Electron. Commun. Conf. (OECC), Shanghai, China, Jul. 2015, pp. 5580–5585.
[55] L. Feng, R. Q. Hu, J. Wang, P. Xu, and Y. Qian, “Applying VLC in 5G networks: Architectures and key technologies,” IEEE Network, vol. 30, no. 6, pp. 77–83, Nov./Dec. 2016.
[56] S. Baig, H. M. Asif, T. Umer, S. Mumtaz, M. Shafiq, and J.-G. Choi, “High data rate discrete wavelet transform-based PLC-VLC design for 5G communication systems,” IEEE Access, vol. 6, pp. 52490–52499, 2018.
[57] Y. Wang and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” J. Lightw. Technol., vol. 33, no. 22, pp. 4671–4682, Nov. 15, 2015.
[58] T. Rakia, F. Gebali, H.-C. Yang, and M.-S. Alouini, “Cross layer analysis of P2MP hybrid FSO/RF network,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 3, pp. 234–243, Mar. 2017.
[59] K. Zhou, C. Gong, N. Wu, and Z. Xu, “Distributed channel allocation and rate control for hybrid FSO/RF vehicular ad hoc networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 8, pp. 669–681, Aug. 2017.
[60] M. K. Hasan, M. Shahjalal, M. Z. Chowdhury, and Y. M. Jang, “Real-time healthcare data transmission for remote patient monitoring in patch-based hybrid OCC/BLE networks,” Sensors, vol. 19, no.
5, pp. 1–23, Mar. 2019.
[61] T. D. Nguyen, S. Park, Y. Chae, and Y. L. Park, “VLC/OCC hybrid optical wireless systems for versatile indoor applications,” IEEE Access, vol. 7, pp. 22371–22376, 2019.
[62] M. K. Hasan, M. Z. Chowdhury, M. Shahjalal, and Y. M. Jang, “Fuzzy based network assignment and link-switching analysis in hybrid OCC/LiFi system,” Wireless Commun. Mobile Comput., vol. 2018, Nov. 2018, Art. no. 2870518.
[63] W.-S. Tsai, C.-Y. Li, H.-H. Lu, Y.-F. Lu, S.-C. Tu, and Y.-C. Huang, “256 Gb/s four-channel SDM-based PAM4 FSO-UWOC convergent system,” IEEE Photon. J., vol. 11, no. 2, pp. 1–8, Apr. 2019.
[64] M. Z. Chowdhury, M. T. Hossan, and Y. M. Jang, “Interference management based on RT/nRT traffic classification for FFR-aided small cell/macrocell heterogeneous networks,” IEEE Access, vol. 6, pp. 31340–31358, 2018.
[65] H. Alshaer and H. Haas, “Bidirectional LiFi attocell access point slicing scheme,” IEEE Trans. Netw. Service Manag., vol. 15, no. 3, pp. 909–922, Sep. 2018.
[66] A. Sevincer, A. Bhattarai, M. Bilgi, M. Yuksel, and N. Pal, “LIGHTNETs: Smart LIGHTing and mobile optical wireless NETworks—A survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 4, pp. 1620–1641, 4th Quart., 2013.
[67] M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 2231–2258, 4th Quart., 2014.
[68] P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and
sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2047–2077, 4th Quart., 2015.
[69] N. Saha, M. S. Ifthekhar, N. T. Le, and Y. M. Jang, “Survey on optical camera communications:
Challenges and opportunities,” IET Optoelectron., vol. 9, no. 5, pp. 172–183, Oct. 2015.
[70] H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE Access, vol. 4, pp. 1518–1547, 2016.
[71] L. U. Khan, “Visible light communication: Applications, architecture, standardization and research challenges,” Digit. Commun. Netw., vol. 3, no. 2, pp. 78–88, Aug. 2016.
[72] A.-M. Cailean and M. Dimian, “Current challenges for visible light ˇ communications usage in vehicle applications: A survey,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2681–2703, 4th Quart., 2017.
[73] H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 57–97, 1st Quart., 2017.
[74] Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A survey of underwater optical wireless communications,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 204–238, 1st Quart., 2017.
[75] I. K. Son and S. Mao, “A survey of free space optical networks,” Digit. Commun. Netw., vol. 3, no. 2, pp. 67–77, May 2017.
[76] M. Raj, A. Narayan, S. Datta, S. K. Das, and J. K. Pathak, “Fixed mobile convergence: Challenges and solutions,” IEEE Commun. Mag., vol. 48, no. 12, pp. 26–34, Dec. 2010.
[77] K. Atsuo, T. Toshiyuki, T. Tsutomu, H. Toshiaki, and W. Kazuo, “The next-generation FMC (fixed-mobile convergence) core network,” NEC Techn. J., vol. 1, no. 2, pp. 31–35, 2006.
[78] F. Lu et al., “Efficient mobile fronthaul incorporating VLC links for coordinated densified cells,” IEEE Photon. Technol. Lett., vol. 29, no. 13, pp. 1059–1062, Jul. 1, 2017.
[79] M. Obeed, A. M. Salhab, M.-S. Alouini, and S. A. Zummo, On optimizing VLC networks for downlink multi-user transmission: A survey. Aug. 2018. [Online]. Available: arXiv:1808.05089
[80] M. Hammouda, A. M. Vegni, H. Haas, and J. Peissig, “Resource allocation and interference management in OFDMA-based VLC networks,” Phys. Commun., vol. 31, pp. 169–180, Dec. 2018.
[81] S. S. Bawazir, P. C. Sofotasios, S. Muhaidat, Y. Al-Hammadi, and G. K. Karagiannidis, “Multiple access for visible light communications: Research challenges and future trends,” IEEE Access, vol. 6, pp. 26167–26174, 2018.
[82] T. Nguyen, M. Z. Chowdhury, and Y. M. Jang, “A novel link switching scheme using pre-scanning
and RSS prediction in visible light communication networks,” EURASIP J. Wireless Commun. Netw., vol. 2013, pp. 1–17, Dec. 2013.
[83] D. Tsonev et al., “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 637–640, Apr. 1, 2014.
[84] F. Zafar, M. Bakaul, and R. Parthiban, “Laser-diode-based visible light communication: Toward
gigabit class communication,” IEEE Commun. Mag., vol. 55, no. 2, pp. 144–151, Feb. 2017.
[85] S. Li, A. Pandharipande, and F. M. J. Willems, “Unidirectional visible light communication and illumination with LEDs,” IEEE Sensors J., vol. 16, no. 23, pp. 8617–8626, Dec. 2016.
[86] K. Xu, H.-Y. Yu, Y.-J. Zhu, and Y. Sun, “On the ergodic channel capacity for indoor visible light communication systems,” IEEE Access, vol. 5, pp. 833–841, 2017.
[87] M. Z. Chowdhury, M. S. Uddin, and Y. M. Jang, “Dynamic channel allocation for class-based QoS
provisioning and call admission in visible light communication,” Arab. J. Sci. Eng., vol. 39, no. 2, pp. 1007–1016, Feb. 2014.
[88] J. Liu, P. W. C. Chan, D. W. K. Ng, E. S. Lo, and S. Shimamoto, “Hybrid visible light communications in intelligent transportation systems with position based services,” in Proc. IEEE Globecom
Workshops, Anaheim, CA, USA, Mar. 2012, pp. 1254–1259.
[89] C. Chen, D. A. Basnayaka, and H. Haas, “Downlink performance of optical attocell networks,” J. Lightw. Technol., vol. 34, no. 1, pp. 137–156, Jan. 1, 2016.
[90] N. Soni, M. Mohta, and T. Choudhury, “The looming visible light communication Li-Fi: An edge over Wi-Fi,” in Proc. Int. Conf. Syst. Model. Adv. Res. Trends (SMART), Moradabad, India, Nov. 2016, pp. 1–6.
[91] H. Haas, “LiFi is a paradigm-shifting 5G technology,” Rev. Phys., vol. 3, pp. 26–31, Nov. 2018.
[92] S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge, U.K.: Cambridge Univ. Press, Mar. 2015.
[93] H.-H. Lu et al., “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photon. J., vol. 9, no. 1, pp. 1–8, Feb. 2017.
[94] Y. Goto et al., “A new automotive VLC system using optical communication image sensor,” IEEE Photon. J., vol. 8, no. 3, pp. 1–17, Jun. 2016.
[95] T. Yamazato et al., “Image-sensor-based visible light communication for automotive applications,” IEEE Commun. Mag., vol. 52, no. 7, pp. 88–97, Jul. 2014.
[96] T. Yamazato et al., “Vehicle motion and pixel illumination modeling for image sensor based visible light communication,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1793–1805, Sep. 2015.
[97] M. Yoshino, S. Haruyama, and M. Nakagawa, “High-accuracy positioning system using visible LED
lights and image sensor,” in Proc. IEEE Radio Wireless Symp., Orlando, FL, USA, Jan. 2008, pp. 439–442.
[98] W. A. Cahyadi, Y. H. Kim, Y. H. Chung, and C.-J. Ahn, “Mobile phone camera-based indoor visible light communications with rotation compensation,” IEEE Photon. J., vol. 8, no. 2, pp. 1–8, Apr. 2016.
[99] M. S. Sarker et al., “Design and implementation of a CMOS light pulse receiver cell array for
spatial optical communications,” Sensors, vol. 11, no. 2, pp. 2056–2076, Feb. 2011.
[100] T. Fujihashi, T. Koike-Akino, P. V. Orlik, and T. Watanabe, “Experimental throughput analysis in screen-camera visual MIMO communications,” in Proc. IEEE Glob. Commun. Conf., Washington, DC, USA, Dec. 2016, pp. 1–6.
[101] I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, and S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photon. J., vol. 6, no. 5, pp. 1–14, Oct. 2014.
[102] M. T. Hossan et al., “A new vehicle localization scheme based on combined optical camera communication and photogrammetry,” Mobile Inf. Syst., vol. 2018, Mar. 2018, Art. no. 8501898.
[103] M. Hossan, M. Z. Chowdhury, A. Islam, and Y. M. Jang, “A novel indoor mobile localization system based on optical camera communication,” Wireless Commun. Mobile Comput., vol. 2018, Feb. 2018,
Art. no. 9353428.
[104] M. T. Hossan, M. Z. Chowdhury, M. Shahjalal, and Y. M. Jang, “Human bond communication with head-mounted displays: Scope, challenges, solutions, and applications,” IEEE Commun. Mag., vol. 57,
no. 2, pp. 26–32, Feb. 2019.
[105] N. Rajagopal, P. Lazik, and A. Rowe, “Hybrid visible light communication for cameras and low-power embedded devices,” in Proc. 1st ACM MobiCom Workshop Visible Light Commun. Syst., New York, NY, USA, Sep. 2014, pp. 33–38.
[106] D. L. Begley, “Free-space laser communications: A historical perspective,” in Proc. Annu. Meeting IEEE Lasers Electro Opt. Soc., Glasgow, U.K., Nov. 2002, pp. 391–392.
[107] C. Chen, W.-D. Zhong, H.-C. Yang, and P. Du, “On the performance of MIMO-NOMA-based visible light communication systems,” IEEE Photon. Technol. Lett., vol. 30, no. 4, pp. 307–310, Feb. 15, 2018.
[108] A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Effect of RF interference on the security-reliability trade-off analysis of multiuser mixed RF/FSO relay networks with power allocation,” J. Lightw. Technol., vol. 35, no. 9, pp. 1490–1505, May 1, 2017.
[109] P. Luo et al., “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photon. J., vol. 7, no. 5, pp. 1–12, Oct. 2015.
[110] W. M. R. Shakir, “Performance evaluation of a selection combining scheme for the hybrid FSO/RF system,” IEEE Photon. J., vol. 10, no. 1, pp. 1–10, Feb. 2018.
[111] H. Lei, Z. Dai, I. S. Ansari, K.-H. Park, G. Pan, and M.-S. Alouini, “On secrecy performance
of mixed RF-FSO systems,” IEEE Photon. J., vol. 9, no. 4, pp. 1–14, Aug. 2017.
[112] B. Bag, A. Das, I. S. Ansari, A. Prokeš, C. Bose, and A. Chandra, “Performance analysis of hybrid FSO systems using FSO/RF-FSO link adaptation,” IEEE Photon. J., vol. 10, no. 3, pp. 1–17, Jun. 2018.
[113] A. K. Majumdar and J. C. Ricklin, Free-Space Laser Communications: Principles and Advances. New York, NY, USA: Springer-Verlag, Dec. 2010.
[114] Y. Li, A. Cai, G. Qiao, L. Shi, S. K. Bose, and G. Shen, “Multiobjective topology planning for microwave-based wireless backhaul networks,” IEEE Access, vol. 4, pp. 5742–5754, 2016.
[115] J. Lee, Y. Su, and C. Shen, “A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi,” in Proc. 33rd Annu. Conf. IEEE Ind. Electron. Soc., Nov. 2007, pp. 46–51.
[116] M. Collotta, G. Pau, T. Talty, and O. K. Tonguz, “Bluetooth 5: A concrete step forward toward the IoT,” IEEE Commun. Mag., vol. 56, no. 7, pp. 125–131, Jul. 2018.
[117] Different Wi-Fi Protocols and Data Rates, Intel, Santa Clara, CA, USA, Sep. 2018. [Online]. Available: https://www.intel.com/ content/www/us/en/support/articles/000005725/network-and-i-o/wire
less-networking.html
[118] (2017). Radio-Electronics. [Online]. Available: https://devopedia.org/ ieee-802-11ad
[119] S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. America, vol. 26, no. 3, pp. 530–539, Mar. 2009.
[120] S. Arnon, “Underwater optical wireless communication network,” Opt. Eng., vol. 49, no. 1, Jan. 2010, Art. no. 015001.
[121] I. Alimi, A. Shahpari, A. Sousa, R. Ferreira, P. Monteiro, and A. Teixeira, “Challenges and opportunities of optical wireless communication technologies,” in Optical Communication Technology.
London, U.K.: IntechOpen, 2017, pp. 5–44.
[122] M. B. Rahaim, A. M. Vegni, and T. D. C. Little, “A hybrid radio frequency and broadcast visible light communication system,” in Proc. IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, Dec. 2011, pp. 792–796.
[123] W. Wu, F. Zhou, and Q. Yang, “Dynamic network resource optimization in hybrid VLC and radio frequency networks,” in Proc. Int. Conf. Sel. Topics Mobile Wireless Netw. (MoWNeT), Avignon, France, May 2017, pp. 1–7.
[124] G. Pan, H. Lei, Z. Ding, and Q. Ni„ “On 3-D hybrid VLC-RF systems with light energy harvesting and OMA scheme over RF links,” in Proc. IEEE Glob. Commun. Conf., Singapore, Dec. 2017, pp. 1–6.
[125] C. Yan, Y. Xu, J. Shen, and J. Chen, “A combination of VLC and WiFi based indoor wireless access network and its handover strategy,” in Proc. IEEE Int. Conf. Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, Oct. 2016, pp. 1–4.
[126] E. Zedini, H. Soury, and M.-S. Alouini, “On the performance analysis of dual-hop mixed FSO/RF systems,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3679–3689, May 2016.
[127] T. Rakia, H.-C. Yang, F. Gebali, and M.-S. Alouini, “Optimal design of dual-hop VLC/RF communication system with energy harvesting,” IEEE Commun. Lett., vol. 20, no. 10, pp. 1979–1982, Oct. 2016.
[128] H. Aarthi and K. James, “A novel protocol design in hybrid networks of visible light communication and OFDMA system,” in Proc. IEEE Int. Conf. Elect. Comput. Commun. Technol. (ICECCT), Coimbatore, India, Mar. 2015, pp. 1–5.
[129] N. Varshney and P. Puri, “Performance analysis of decode-and-forwardbased mixed MIMO-RFFSO cooperative systems with source mobility and imperfect CSI,” J. Lightw. Technol., vol. 35, no. 11, pp. 2070–2077, Jun. 1, 2017.
[130] B. Makki, T. Svensson, M. Brandt-Pearce, and M.-S. Alouini, “On the performance of millimeter wave-based RF-FSO multi-hop and mesh networks,” IEEE Trans. Wireless Commun., vol. 16, no. 12, pp. 7746–7759, Dec. 2017.
[131] H. Arezumand, H. Zamiri-Jafarian, and E. Soleimani-Nasab, “Outage and diversity analysis of underlay cognitive mixed RF-FSO cooperative systems,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 10, pp. 909–920, Oct. 2017.
[132] Y. S. M. Pratama and K. W. Choi, “Bandwidth aggregation protocol and throughput-optimal scheduler for hybrid RF and visible light communication systems,” IEEE Access, vol. 6, pp. 32173–32187,
2018.
[133] Y. Wang, X. Wu, and H. Haas, “Load balancing game with shadowing effect for indoor hybrid LiFi/RF networks,” IEEE Trans. Wireless Commun., vol. 16, no. 4, pp. 2366–2378, Apr. 2017.
[134] Z. Du, C. Wang, Y. Sun, and G. Wu, “Context-aware indoor VLC/RF heterogeneous network selection: Reinforcement learning with knowledge transfer,” IEEE Access, vol. 6, pp. 33275–33284, 2018.
[135] M. Hammouda, S. Akın, A. M. Vegni, H. Haas, and J. Peissig, “Link selection in hybrid RF/VLC
systems under statistical queueing constraints,” IEEE Trans. Wireless Commun., vol. 17, no. 4, pp.
2738–2754, Apr. 2018.
[136] A. A. Purwita, M. D. Soltani, M. Safari, and H. Haas, “Handover probability of hybrid LiFi/RF-based networks with randomly-oriented devices,” in Proc. IEEE 87th Veh. Technol. Conf. (VTC Spring), Porto, Portugal, Jun. 2018, pp. 1–5.
[137] Y. Wang, D. A. Basnayaka, X. Wu, and H. Haas, “Optimization of load balancing in hybrid LiFi/RF networks,” IEEE Trans. Commun., vol. 65, no. 4, pp. 1708–1720, Apr. 2017.
[138] M. F. Marzban, M. Kashef, M. Abdallah, and M. Khairy, “Beamforming and power allocation for physical-layer security in hybrid RF/VLC wireless networks,” in Proc. 13th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Valencia, Spain, Jun. 2017, pp. 258–263.
[139] H. Tabassum and E. Hossain, “Coverage and rate analysis for coexisting RF/VLC downlink cellular networks,” IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2588–2601, Apr. 2018.
[140] M. Kashef, M. Ismail, M. Abdallah, K. Qaraqe, and E. Serpedin, “Power allocation for maximizing energy efficiency of mixed RF/VLC wireless networks,” in Proc. Eur. Signal Process. Conf. (EUSIPCO), Nice, France, Dec. 2015, pp. 1–6.
[141] X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and WiFi,” IEEE Trans. Commun., vol. 63, no. 4, pp. 1319–1329, Apr. 2015.
[142] S. Shao et al., “An indoor hybrid WiFi-VLC Internet access system,” in Proc. Int. Conf. Mobile Ad Hoc Sensor Syst., Philadelphia, PA, USA, Oct. 2014, pp. 569–574.
[143] M. Ayyash et al., “Coexistence of WiFi and LiFi toward 5G: Concepts, opportunities, and challenges,” IEEE Commun. Mag., vol. 54, no. 2, pp. 64–71, Feb. 2016.
[144] A. A. Qidan, M. Morales-Cespedes, and A. G. Armada, “The role of WiFi in LiFi hybrid networks based on blind interference alignment,” in Proc. IEEE 87th Veh. Technol. Conf. (VTC Spring), Porto, Portugal, Jun. 2018, pp. 1–5.
[145] Y. Wang, X. Wu, and H. Haas, “Distributed load balancing for Internet of Things by using Li-Fi and RF hybrid network,” in Proc. IEEE 26th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), Hong Kong, Sep. 2015, pp. 1289–1294.
[146] J. An, N. Q. Pham, and W. Y. Chung, “Multiple bio-monitoring system using visible light for electromagnetic-wave free indoor healthcare,” Opt. Commun., vol. 405, pp. 107–113, Dec. 2017.
[147] K. Kumar and D. K. Borah, “Quantize and encode relaying through FSO and hybrid FSO/RF links,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2361–2374, Jun. 2015.
[148] M. Z. Chowdhury, M. T. Hossan, M. K. Hasan, and Y. M. Jang, “Integrated RF/optical wireless networks for improving QoS in indoor and transportation applications,” Wireless Pers. Commun., vol.
107, pp. 1401–1430, Sep. 2018.
[149] V. Jamali, D. S. Michalopoulos, M. Uysal, and R. Schober, “Link allocation for multiuser systems with hybrid RF/FSO backhaul: Delaylimited and delay-tolerant designs,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3281–3295, May 2016.
[150] L. Kong, W. Xu, L. Hanzo, H. Zhang, and C. Zhao, “Performance of a free-space-optical relay-assisted hybrid RF/FSO system in generalized M-distributed channels,” IEEE Photon. J., vol. 7, no. 5, pp. 1–19, Oct. 2015.
[151] A. M. Salhab, F. S. Al-Qahtani, R. M. Radaydeh, S. A. Zummo, and H. Alnuweiri, “Power allocation and performance of multiuser mixed RF/FSO relay networks with opportunistic scheduling and outdated channel information,” J. Lightw. Technol., vol. 34, no. 13, pp. 3259–3272, Jul. 1, 2016.
[152] P. V. Trinh, T. C. Thang, and A. T. Pham, “Mixed mmWave RF/FSO relaying systems over generalized fading channels with pointing errors,” IEEE Photon. J., vol. 9, no. 1, pp. 1–14, Feb. 2017.
[153] S. Enayati and H. Saeedi, “Deployment of hybrid FSO/RF links in backhaul of relay-based rural area cellular networks: Advantages and performance analysis,” IEEE Commun. Lett., vol. 20, no. 9,
pp. 1824–1827, Sep. 2016.
[154] N. Varshney and A. K. Jagannatham, “Cognitive decode-and-forward MIMO-RF/FSO cooperative relay networks,” IEEE Commun. Lett., vol. 21, no. 4, pp. 893–896, Apr. 2017.
[155] E. Soleimani-Nasab and M. Uysal, “Generalized performance analysis of mixed RF/FSO cooperative systems,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 714–727, Jan. 2016.
[156] L. Yang, M. O. Hasna, and X. Gao, “Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1913–1924,
Sep. 2015.
[157] Y. Tang and M. Brandt-Pearce, “Link allocation, routing, and scheduling for hybrid FSO/RF wireless mesh networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 6, no. 1, pp. 86–95, Jan. 2014.
[158] V. Palliyembil, J. Vellakudiyan, P. Muthuchidamdaranathan, and T. A. Tsiftsis, “Capacity and
outage probability analysis of asymmetric dual-hop RF–FSO communication systems,” IET Commun., vol. 12, no. 16, pp. 1979–1983, Sep. 2018.
[159] N. Varshney, A. K. Jagannatham, and P. K. Varshney, “Cognitive MIMO-RF/FSO cooperative relay
communication with mobile nodes and imperfect channel state information,” IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 3, pp. 544–555, Sep. 2018.
[160] C. Zhang, J. Ye, G. Pan, and Z. Ding, “Cooperative hybrid VLCRF systems with spatially random terminals,” IEEE Trans. Commun., vol. 66, no. 12, pp. 6396–6408, Dec. 2018.
[161] S. I. Hussain, M. M. Abdallah, and K. A. Qaraqe, “Hybrid radio-visible light downlink performance in RF sensitive indoor environments,” in Proc. Int. Symp. Commun. Control Signal Process. (ISCCSP), Athens, Greece, May 2014, pp. 81–84.
[162] S. Shao and A. Khreishah, “Delay analysis of unsaturated heterogeneous omnidirectional-directional small cell wireless networks: The case of RF-VLC coexistence,” IEEE Trans. Wireless Commun.,
vol. 15, no. 12, pp. 8406–8421, Oct. 2016.
[163] S. M. Nlom, A. R. Ndjiongue, and K. Ouahada, “Cascaded PLC-VLC channel: An indoor measurements campaign,” IEEE Access, vol. 6, pp. 25230–25239, 2018.
[164] H. Lei, Z. Dai, K. H. Park, W. Lei, G. Pan, and M. S. Alouini, Secrecy outage analysis of mixed RF-FSO downlink SWIPT systems. 2018. [Online]. Available: arXiv:1806.01895
[165] T. Wang, F. Yang, L. Cheng, and J. Song, “Spectral-efficient generalized spatial modulation based hybrid dimming scheme with LACOOFDM in VLC,” IEEE Access, vol. 6, pp. 41153–41162, 2018.
[166] M. I. Petkovic and Z. Trpovski, “Exact outage probability analysis of the mixed RF/FSO system with variable-gain relays,” IEEE Photon. J., vol. 10, no. 6, pp. 1–14, Dec. 2018.
[167] E. Balti and M. Guizani, “Mixed RF/FSO cooperative relaying systems with co-channel interference,” IEEE Trans. Commun., vol. 66, no. 9, pp. 4014–4027, Sep. 2018.
[168] J. Al-Khori, G. Nauryzbayev, M. M. Abdallah, and M. Hamdi, “Secrecy performance of decode-and-forward based hybrid RF/VLC relaying systems,” IEEE Access, vol. 7, pp. 10844–10856, 2019.
[169] M. L. Sichitiu and M. Kihl, “Inter-vehicle communication systems: A survey,” IEEE Commun. Surveys Tuts., vol. 10, no. 2, pp. 88–105, 2nd Quart., 2008.
[170] L. Yang, M. O. Hasna, and I. S. Ansari, “Unified performance analysis for multiuser mixed η−μ and M-distribution dual-hop RF/FSO systems,” IEEE Trans. Commun., vol. 65, no. 8, pp. 3601–3613, Aug. 2017.
[171] F. Ahdi and S. Subramaniam, “Capacity enhancement of RF wireless mesh networks through FSO links,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 7, pp. 495–506, Jul. 2016.
[172] M. Atakora and H. Chenji, “Multicast techniques for hybrid RF/FSO DTNs,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 11, pp. 1051–1061, Nov. 2017.
[173] J. Gupta, V. K. Dwivedi, and V. Karwal, “On the performance of RF-FSO system over rayleigh and kappa-mu/inverse Gaussian fading environment,” IEEE Access, vol. 6, pp. 4186–4198, 2018.
[174] Y. F. Al-Eryani, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Protocol design and performance analysis of multiuser mixed RF and hybrid FSO/RF relaying with buffers,” IEEE/OSA J. Opt. Commun. Netw., vol. 10, no. 4, pp. 309–321, Apr. 2018.
[175] I. Trigui, N. Cherif, and S. Affes, “Relay-assisted mixed FSO/RF systems over Málaga-M and κ–μ shadowed fading channels,” IEEE Wireless Commun. Lett., vol. 6, no. 5, pp. 682–685, Oct. 2017.
[176] H. Lei, H. Luo, K. Park, Z. Ren, G. Pan, and M.-S. Alouini, “Secrecy outage analysis of mixed RF-FSO systems with channel imperfection,” IEEE Photon. J., vol. 10, no. 3, pp. 1–13, Jun. 2018.
[177] Y. F. Al-Eryani, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Two-way multiuser mixed RF/FSO relaying: Performance analysis and power allocation,” IEEE/OSA J. Opt. Commun. Netw., vol. 10, no. 4, pp. 396–408, Apr. 2018.
[178] B. Makki, T. Svensson, K. Buisman, J. Perez, and M.-S. Alouini, “Wireless energy and information transmission in FSO and RFFSO links,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 90–93, Feb. 2018.
[179] P. Pesek, S. Zvánovec, P. Chvojka, Z. Ghassemlooy, and P. A. Haigh, “Demonstration of a hybrid FSO/VLC link for the last mile and last meter networks,” IEEE Photon. J., vol. 11, no. 1, pp. 1–17, Feb. 2019.
[180] M. A. Kashani, M. Uysal, and M. Kavehrad, “On the performance of MIMO FSO communications over double generalized gamma fading channels,” in Proc. IEEE Int. Conf. Commun., London, U.K., Jun. 2015, pp. 5144–5149.
[181] M. Torabi and R. Effatpanahi, “Performance analysis of hybrid RF-FSO systems with amplify-and-forward selection relaying,” Opt. Commun., vol. 434, pp. 80–90, Mar. 2019.
[182] F. S. Al-Qahtani, A. H. A. El-Malek, I. S. Ansari, R. M. Radaydeh, and S. A. Zummo, “Outage analysis of mixed underlay cognitive RF MIMO and FSO relaying with interference reduction,” IEEE Photon. J., vol. 9, no. 2, pp. 1–22, Apr. 2017.
[183] M. Weiß, M. Huchard, A. Stohr, B. Charbonnier, S. Fedderwitz, and D. S. Jager, “60-GHz photonic millimeter-wave link for shortto medium-range wireless transmission up to 12.5 Gb/s,” J. Lightw. Technol., vol. 26, no. 15, pp. 2424–2429, Aug. 1, 2008.
[184] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. I. Corke, “Data collection, storage, and
retrieval with an underwater sensor network,” in Proc. 3rd Int. Conf. Embedded Netw. Sensor Syst.,
San Diego, CA, USA, Nov. 2005, pp. 154–165.
[185] N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, Underwater optical wireless communications, networking, and localization: A survey. Feb. 2018. [Online]. Available: arXiv:1803.02442v1[186] N. Saeed, A. Celik, T. Y. Al-Naffouri, and M.-S. Alouini, “Energy harvesting hybrid acoustic-optical underwater wireless sensor networks localization,” Sensors, vol. 18, no. 1, p. 51, 2018.
[187] N. Farr, A. Bowen, J. Ware, and C. Pontbriand, “An integrated, underwater optical /acoustic communications system,” in Proc. IEEE SYDNEY OCEANS, Sydney, NSW, Australia, May 2010, pp. 1–6.
[188] M. Doniec, I. Vasilescu, M. Chitre, C. Detweiler, M. Hoffmann-Kuhnt, and D. Rus, “AquaOptical: A lightweight device for high-rate longrange underwater point-to-point communication,” in Proc. OCEANS, Biloxi, MS, USA, 2009, pp. 1–6.
[189] C. Moriconi, G. Cupertino, S. Betti, and M. Tabacchiera, “Hybrid acoustic/optic communications in underwater swarms,” in Proc. OCEANS, May 2015, pp. 1–9.
[190] L. J. Johnson, R. J. Green, and M. S. Leeson, “Hybrid underwater optical/acoustic link design,” in Proc. Int. Conf. Transp. Opt. Netw. (ICTON), Graz, Austria, Jul. 2014, pp. 1–4.
[191] S. Han, Y. Noh, R. Liang, R. Chen, Y.-J. Cheng, and M. Gerla, “Evaluation of underwater optical-acoustic hybrid network,” China Commun., vol. 11, no. 5, pp. 49–59, May 2014.
[192] (2018). World Health Organization. [Online]. Available: http://www.who.int/uv/resources/fact/fs202laserpointers.pdf
[193] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 6, pp. 1067–1080, Nov. 2007.
[194] H. Dahrouj, A. Douik, F. Rayal, T. Y. Al-Naffouri, and M.-S. Alouini, “Cost-effective hybrid
RF/FSO backhaul solution for next generation wireless systems,” IEEE Wireless Commun., vol. 22, no. 5, pp. 98–104, Oct. 2015.
[195] H. Samimi and M. Uysal, “End-to-end performance of mixed RF/FSO transmission systems,” IEEE/OSA J. Opt. Commun. Netw., vol. 5, no. 11, pp. 1139–1144, Nov. 2013.
[196] G. T. Djordjevic, M. I. Petkovic, A. M. Cvetkovic, and G. K. Karagiannidis, “Mixed RF/FSO relaying with outdated channel state information,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1935–1948, Sep. 2015.
[197] M. I. Petkovic, A. M. Cvetkovic, G. T. Djordjevic, and G. K. Karagiannidis, “Partial relay selection with outdated channel state estimation in mixed RF/FSO systems,” J. Lightw. Technol., vol.
33, no. 13, pp. 2860–2867, Jul. 1, 2015.
[198] T. Rakia, H.-C. Yang, F. Gebali, and M.-S. Alouini, “Power adaptation based on truncated channel inversion for hybrid FSO/RF transmission with adaptive combining,” IEEE Photon. J., vol. 7, no. 4, pp. 1–12, Aug. 2015.
[199] M. Maier, “Fiber-wireless (FiWi) broadband access networks in an age of convergence: Past, present, and future,” Adv. Opt., vol. 2014, Jun. 2014, Art. no. 945364.
[200] P. Lin, T. Wang, J. Hu, Y. Suemura, S. Nakamura, and C. Qiao, “Optical-to-wireless-integration cost modeling,” in Proc. Workshop High Perform. Switch. Routing, Brooklyn, NY, USA, 2017, pp. 1–6.
[201] J. Yu, X. Li, and W. Zhou, “Tutorial: Broadband fiber-wireless integration for 5G+ communication,” APL Photon., vol. 3, no. 11, pp. 1–20, Aug. 2018.
[202] M. Zhu, L. Zhang, J. Wang, L. Cheng, C. Liu, and G.-K. Chang, “Radio-over-fiber access architecture for integrated broadband wireless services,” J. Lightw. Technol., vol. 31, no. 23, pp. 3614–3620, Dec. 1, 2013.
[203] M. Kashef, M. Ismail, M. Abdallah, K. A. Qaraqe, and E. Serpedin, “Energy efficient resource
allocation for mixed RF/VLC heterogeneous wireless networks,” IEEE J. Sel. Areas Commun., vol. 34,
no. 4, pp. 883–893, Apr. 2016.
[204] S. I. Mushfique, P. Palathingal, Y. S. Eroglu, M. Yuksel, I. Guvenc, and N. Pala, “A software-defined multi-element VLC architecture,” IEEE Commun. Mag., vol. 56, no. 2, pp. 196–203, Feb. 2018.
[205] X. Bao, J. Dai, and X. Zhu, “Visible light communications heterogeneous network (VLC-HetNet): New model and protocols for mobile scenario,” Wireless Netw., vol. 23, no. 1, pp. 299–309, Jan. 2017.
[206] I. Stefan, H. Burchardt, and H. Haas, “Area spectral efficiency performance comparison between VLC and RF femtocell networks,” in Proc. IEEE Int. Conf. Commun. (ICC), Budapest, Hungary, Jun. 2013, pp. 3825–3829.
[207] M. S. Saud and M. Katz, “Implementation of a hybrid optical-RF wireless network with fast network handover,” in Proc. Eur. Wireless Conf., Dresden, Germany, May 2017, pp. 1–6.
[208] I. Stefan and H. Haas, “Hybrid visible light and radio frequency communication systems,” in Proc. IEEE 80th Veh. Technol. Conf. (VTC-Fall), Vancouver, BC, Canada, Sep. 2014, pp. 1–5.
[209] A. Khreishah, S. Shao, A. Gharaibeh, M. Ayyash, H. Elgala, and N. Ansari, A hybrid RF-VLC system for energy efficient wireless access. 2018. [Online]. Available: arXiv:1806.05265
[210] F. Duvnjak, J. OŽegovic, and A. Kristi ´ c, “Heterogeneous Wi-Fi ´ and VLC (RF-optical) wireless access architecture,” in Proc. Int. Conf. Softw. Telecommun. Comput. Netw. (SoftCOM), Split, Croatia, Sep. 2015, pp. 310–314.
[211] Y. Wang, X. Wu, and H. Haas, “Fuzzy logic based dynamic handover scheme for indoor Li-Fi and
RF hybrid network,” in Proc. IEEE ICC Opt. Netw. Syst., May 2016, pp. 1–6.
[212] M. Hammouda, S. Akın, A. M. Vegniy, H. Haasz, and J. Peissig, “Hybrid RF/VLC systems under QoS constraints,” in Proc. 25th Int. Conf. Telecommun. (ICT), 2018, pp. 1–7.
[213] Y. Wang, X. Wu, and H. Haas, “Analysis of area data rate with shadowing effects in Li-Fi and
RF hybrid network,” in Proc. IEEE Int. Conf. Commun. (ICC), Kuala Lumpur, Malaysia, May 2016, pp. 1–5.
[214] X. Wu, M. Safari, and H. Haas, “Joint optimisation of load balancing and handover for hybrid
LiFi and WiFi networks,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), San Francisco, CA, USA, Mar. 2017, pp. 1–5.
[215] X. Wu, M. Safari, and H. Haas, “Access point selection for hybrid Li-Fi and Wi-Fi networks,”
IEEE Trans. Commun., vol. 65, no. 12, pp. 5375–5385, Dec. 2017.
[216] Y. Wu, Q. Yang, D. Park, and K. S. Kwak, “Dynamic link selection and power allocation with reliability guarantees for hybrid FSO/RF systems,” IEEE Access, vol. 5, pp. 13654–13664, 2017.
[217] T. Rakia, H.-C. Yang, M.-S. Alouini, and F. Gebali, “Outage analysis of practical FSO/RF hybrid system with adaptive combining,” IEEE Commun. Lett., vol. 19, no. 8, pp. 1366–1369, Aug. 2015.
[218] A. H. A. El-Malek, A. M. Salhab, S. A. Zummo, and M.-S. Alouini, “Security-reliability trade-off analysis for multiuser SIMO mixed RF/FSO relay networks with opportunistic user scheduling,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 5904–5918, Sep. 2016.
[219] O. Awwad, A. Al-Fuqaha, B. Khan, and G. B. Brahim, “Topology control schema for better QoS in hybrid RF/FSO mesh networks,” IEEE Trans. Commun., vol. 60, no. 5, pp. 1398–1406, May 2012.
[220] B. Makki, T. Svensson, T. Eriksson, and M.-S. Alouini, “On the performance of RF-FSO links with and without hybrid ARQ,” IEEE Trans. Wireless Commun., vol. 15, no. 7, pp. 4928–4943, Jul. 2016.[221] L. Chen, W. Wang, and C. Zhang, “Multiuser diversity over parallel and hybrid FSO/RF links and its performance analysis,” IEEE Photon. J., vol. 8, no. 3, pp. 1–9, Jun. 2016.
[222] I. S. Ansari, F. Yılmaz, and M.-S. Alouini, “Impact of pointing errors on the performance of
mixed RF/FSO dual-hop transmission systems,” IEEE Wireless Commun. Lett., vol. 2, no. 3, pp. 351–354, Jun. 2013.
[223] N. I. Miridakis, M. Matthaiou, and G. K. Karagiannidis, “Multiuser relaying over mixed RF/FSO links,” IEEE Trans. Commun., vol. 62, no. 5, pp. 1634–1645, May 2014.
[224] M. Usman, H.-C. Yang, and M.-S. Alouini, “Practical switchingbased hybrid FSO/RF transmission and its performance analysis,” IEEE Photon. J., vol. 6, no. 5, pp. 1–13, Oct. 2014.
[225] S. Anees and M. R. Bhatnagar, “Performance of an amplifyand-forward dual-hop asymmetric RF-FSO communication system,” IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 2, pp. 124–135, Feb. 2015.
[226] Y. Tang, M. Brandt-Pearce, and S. G. Wilson, “Link adaptation for throughput optimization of
parallel channels with application to hybrid FSO/RF systems,” IEEE Trans. Commun., vol. 60, no. 9,
pp. 2723–2732, Sep. 2012.
[227] A. Touati, A. Abdaoui, F. Touati, M. Uysal, and A. Bouallegue, “On the effects of combined atmospheric fading and misalignment on the hybrid FSO/RF transmission,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 10, pp. 715–725, Oct. 2016.
[228] M. Najafi, V. Jamali, and R. Schober, “Optimal relay selection for the parallel hybrid RF/FSO relay channel: Non-buffer-aided and bufferaided designs,” IEEE Trans. Commun., vol. 65, no. 7, pp. 2794–2810, Jul. 2017.
[229] M. N. Khan et al., “Maximizing throughput of hybrid FSO-RF communication system: An algorithm,” IEEE Access, vol. 6, pp. 30039–30048, 2018.
[230] E. Balti, M. Guizani, B. Hamdaoui, and B. Khalfi, “Aggregate hardware impairments over mixed
RF/FSO relaying systems with outdated CSI,” IEEE Trans. Commun., vol. 66, no. 3, pp. 1110–1123, Mar. 2018.
[231] H. Ma, L. Lampe, and S. Hranilovic, “Hybrid visible light and power line communication for indoor multiuser downlink,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 8, pp. 635–647, Aug. 2017.
[232] Q. Zhu, Z. Chen, and X. He, “Resource allocation for relay-based OFDMA power line communication system,” Electronics, vol. 8, no. 2, pp. 1–13, 2019.
[233] W. Gheth, K. M. Rabie, B. Adebisi, M. Ijaz, and G. Harris, Performance analysis of integrated power-line/visible-light communication systems with AF relaying. 2018. [Online]. Available: arXiv:1807.10169v1
[234] M. D. Kubjana, A. R. Ndjiongue, and T. Shongwe, “Impulsive noise evaluation on PLC-VLC based
on DCO-OFDM,” in Proc. Int. Symp. Commun. Syst. Netw. Digit. Signal Process. (CSNDSP), Budapest, Hungary, Sep. 2018, pp. 1–6.
[235] M. Jani, P. Garg, and A. Gupta, “Performance analysis of a co-operative PLC/VLC system with multiple access points for indoor broadcasting,” Int. J. Electron. Commun., vol. 103, pp. 64–73, May 2019.
[236] Y. Han, X. Zhou, L. Yang, and S. Li, “A bipartite matching based user pairing scheme for hybrid VLC-RF NOMA systems,” in Proc. Int. Conf. Comput. Netw. Commun. (ICNC), Mar. 2018, pp. 480–485.
[237] Z. Huang et al., “Hybrid optical wireless network for future SAGO-integrated communication based on FSO/VLC heterogeneous interconnection,” IEEE Photon. J., vol. 9, no. 2, Apr. 2017, Art. no.
7902410.
[238] S. Shao et al., “Design and analysis of a visible-light-communication enhanced WiFi system,”
IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 10, pp. 960–973, Oct. 2015.
[239] M. K. Hasan, M. Shahjalal, M. Z. Chowdhury, M. T. Hossan, and Y. M. Jang, “Fuzzy logic based
network selection in hybrid OCC/LiFi communication system,” in Proc. Int. Conf. Ubiquitous Future Netw. (ICUFN), Prague, Czech Republic, Jul. 2018, pp. 95–99.
[240] A. Vats, M. Aggarwal, and S. Ahuja, “Outage and error analysis of three hop hybrid VLC/FSO/VLC-based relayed optical wireless communication system,” Trans. Emerg. Telecommun. Technol., vol. 30, no. 5, pp. 1–9, 2018.
[241] V. V. Mai, T. C. Thang, and A. T. Pham, “CSMA/CA-based uplink MAC protocol design and analysis for hybrid VLC/WiFi networks,” in Proc. IEEE Int. Conf. Commun. Workshops, 2017, pp. 457–462.
[242] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey on software-defined wireless sensor networks: Challenges and design requirements,” IEEE Access, vol. 5, pp. 1872–1899, 2017.
[243] J. H. Cox et al., “Advancing software-defined networks: A survey,” IEEE Access, vol. 5, pp. 25487–25526, 2017.
[244] I. T. Haque and N. Abu-Ghazaleh, “Wireless software defined networking: A survey and taxonomy,” IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2713–2737, 4th Quart., 2016.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值