使用Flowise构建RAG知识库

     Flowise 是一种低代码/无代码工作流平台,旨在让人们轻松可视化和构建 LLM 应用程序。

1. 安装与初始化

##下载
[root@node1 data]# git clone FlowiseAI/Flowise

[root@node1 data]# cd Flowise/docker

[root@node1 data]# cp.env.example.env



#设置用户名、密码

[root@node1 data]# vi.env

[root@node1 data]# FLOWISE_USERNAME=user

[root@node1 data]# FLOWISE_PASSWORD=1234



#启动

[root@node1 data]# docker-compose up -d



#访问

[root@node1 data]# http://localhost:3000

2.配置大模型

3.创建知识库

3.1创建知识库空间

3.2选择上传方式</
### 如何在Flowise使用自定义大模型 #### 流程概述 Flowise 是一款基于拖放式的低代码开发平台,旨在帮助开发者轻松创建复杂的自然语言处理工作流。通过其直观的用户界面,可以快速集成不同的组件来实现特定的功能需求[^1]。 要配置并运行带有自定义大模型的工作流,需完成以下几个方面的操作: #### 安装与环境准备 首先,在本地环境中安装 Flowise 并启动服务。可以通过克隆官方仓库到本地,并按照文档说明执行必要的依赖项安装命令[^3]。例如: ```bash git clone https://gitcode.com/gh_mirrors/fl/Flowise.git cd Flowise pip install -r requirements.txt ``` 接着确保 Python 虚拟环境已激活以及所有必需库版本匹配无误之后再继续后续步骤。 #### 添加自定义LLM节点 进入 Flowise 的图形化编辑器页面后,点击左侧栏中的 "+ Add Node" 按钮添加新的计算单元(Node)。在这里可以选择支持外部 API 或者加载预训练权重文件形式接入第三方开源框架如 Hugging Face Transformers 提供的各种大规模语言模型实例[^2]。 对于已经托管在网络上的远程 RESTful 接口服务,则只需填写对应的 URL 地址即可;而如果是离线部署于内部服务器内的私有版 LLM ,则可能还需要额外指定认证令牌等相关参数以便成功调用目标函数逻辑。 #### 参数调整优化性能表现 根据不同应用场景下的具体要求,合理设置超参组合能够有效提升最终输出质量。比如温度值 (Temperature),它控制着生成文本随机性的程度——较低数值倾向于更稳定但保守的回答模式,较高数值则鼓励更多样化的表达方式却可能导致连贯性下降风险增加等问题出现。 另外还有最大长度(Max Tokens)限制每轮对话最多能返回多少token数量作为结果展示给前端用户查看; top-p核采样方法允许我们只考虑累积概率达到一定阈值范围内的候选词选项参与下一步预测过程从而进一步提高效率降低成本开销等等细节都需要仔细权衡考量后再决定最佳取舍方案。 #### 实际案例演示 假设现在有一个场景是要利用某个专精领域知识图谱增强型的大规模预训练模型来进行客服问答任务自动化解决方案设计的话: 1. 创建一个新的空白画布(Canvas); 2. 将上述提到过的两种类型的节点分别加入进来形成一条简单的流水线结构; 3. 对各个连接点处传递的数据格式做兼容适配处理以满足下游消费端期望接收的标准形态; 4. 运行调试直至确认整个链条运作正常为止最后保存成果分享链接给别人体验试用效果如何反馈改进意见不断迭代完善产品功能特性集成为更加成熟可靠的企业级SaaS服务平台之一. ```json { "nodes": [ { "id": "node1", "type": "Custom_LLM_Input", "data": {} }, { "id": "node2", "type": "Knowledge_Base_Enhancer", "data": {} } ], "edges": [{"from":"node1","to":"node2"}] } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值