赛题
基于用户90天内的收支数据和天级别的资产信息训练模型,然后根据用户最近60天的收支数据和资产信息,预测用户7天后的账户余额。
训练数据集(train.txt) 提供了用于建模的数据。验证数据集(test_input.txt)有3000个用户在某个日期以前60天内的收支数据和天级别的资产信息,请对用户7天后的账户余额进行预测。这两个个文件都拥有2种数据:资产信息数据和收支数据。收支数据具有一级分类(收入、支出、本人资金往来)和二级分类(奖金、转账等等)。
资产信息的格式为“用户id,bal,日期,账户余额”(bal是余额的简称)。账户包括用户所有的借记卡/信用卡/投资账户等,账户余额包括借记卡里面的存款和投资账户的持仓金额,信用卡等负债账户里面的应还金额或可用额度不会算在账户余额里面的。
指数平滑
指数平滑的基本公式是 S t = α ∗ y t + ( 1 − α ) ∗ S t − 1 或 y t + 1 ′ = α ∗ y t + ( 1 − α ) ∗ y t ′ S_t=\alpha*y_t+(1-\alpha)*S_{t-1}或y^{'}_{t+1}=\alpha*y_t+(1-\alpha)*y^{'}_t St=α∗yt+(1−α)∗St−1或yt+1′=α∗yt+(1−α)∗

本文探讨了使用机器学习方法预测金融科技领域的用户现金流,特别是指数平滑法在一次和二次平滑中的应用。通过训练数据集进行模型建立,并利用验证数据集进行7天后账户余额的预测。文章指出,虽然简单的指数平滑和ARIMA可能受周期性因素影响,但forecastxgb结合xgboost算法能更好地捕捉这些动态。
最低0.47元/天 解锁文章
:Fintech金融科技现金流预测&spm=1001.2101.3001.5002&articleId=105460598&d=1&t=3&u=a2cad39e59cb47958bc30c48ceacb36a)
1万+

被折叠的 条评论
为什么被折叠?



