NLP基础(七):Transformer模型和Self Attention自注意力机制

本文介绍了Transformer模型的结构,重点讲解了Self Attention自注意力机制的计算过程,包括多头注意力机制,以及Positional Encoding、FFN和Linear & SoftMax等其他关键组件。Transformer模型的优势在于并行计算和处理长距离依赖,但也存在无法有效利用时间序列信息等缺点。
摘要由CSDN通过智能技术生成

1.模型结构

Transformer模型分为左右两部分,和Seq2Seq模型的结构相似,由Encoder和Decoder构成。并且Encoder和Decoder由N=6个相同的layer组成,Nx表示这里是x6个。具体的模型结构如下图:

Transformer模型抽象化之后为下图,所有的编码器在结构上都是相同的,但它们没有共享参数。每个编码器都可以分解成自注意力(self-attention)和前馈(feed-forward)神经网络两个子层,解码器较编码器多了Encoder-Decoder Attention层。

编码器最终的输出键向量Key和值向量Value传输至解码器的每一层,Encoder-Decoder attention层自带Query矩阵。

2.Self Attention

计算自注意力的第一步就是从每个编码器的输入向量(每个单词的词向量)中生成三个向量。也就是说对于每个单词,我们分别创建一个64维的查询向量Query、键向量Key和值向量Value。这三个向量是通过词嵌入与三个权重矩阵后相乘创建的。
Self Attention
首先分别将 q 1 q_1 q1 k 1 , k 2 , . . . , k n k_1,k_2,...,k_n k1k2...k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值