NLP(十):ERNIE

ERNIE是百度基于BERT改进的NLP模型,通过实体级别的Mask和多任务学习增强表现。ERNIE1.0使用了多种中文数据源,2.0则引入Reddit和搜索数据,采用连续多任务学习框架,包含词法、语言结构和语法级别的预训练任务,提升模型在自然语言处理任务上的性能。
摘要由CSDN通过智能技术生成

1.ERNIE1.0

ERNIE(Enhanced Representation through Knowledge Integration) 是百度基于BERT开发的NLP模型。ERNIE使用了更多的语料,除维基百科等数据集外,还使用了中文维基百科,百度百科,百度新闻,百度贴吧数据集。该模型的参数: L = 12,H = 768,A = 12 (BERT BASE)。

ERNIE实现了实体级别的Mask,实体级别的连续Mask改变了训练Task,而BERT是基于单字的Mask,其区别如下图所示:

在这里插入图片描述
ERNIE的实体级别的Mask包括单字、实体和短语等三个级别,实现字粒度的输入:

在这里插入图片描述
使用不同级别的Mask效果如下:

在这里插入图片描述
ERNIE还采用了Dialog embedding,输入层使用多轮对话修改NSP任务(random replace 构造负样本)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值