机器学习基础
机器学习理论基础
博途慧算
这个作者很懒,什么都没留下…
展开
-
机器学习基础(三):线性回归
概览一、前言二、线性回归一、前言作为回归问题中最简单的线性回归应该是机器学习入门最应该掌握和熟悉的算法,现在我分别从频率派和贝叶斯派的角度对ω\omegaω进行估计。二、线性回归假设数据集D=(x1,y1),(x2,y2),...,(xn,yn)D={(x_1,y_1),(x_2,y_2),...,(x_n,y_n)}D=(x1,y1),(x2,y2),...,(xn,yn),...原创 2020-02-11 11:16:05 · 276 阅读 · 0 评论 -
机器学习基础(二):降维
概览一、前言二、主成分分析一、前言大量的特征有助于模型对训练样本的拟合,但随着特征空间维度的增加,导致数据稀疏且分布不均匀,出现维度灾难。较高的特征空间维度学习了训练样本中的噪声,即使训练误差较小,但由于产生过拟合,泛化误差有所增加。因此可考虑降维的方式去除噪声,提升模型的泛化能力。二、主成分分析主成分分析(Principle Component Analysis,PCA)是从参考资料...原创 2020-02-09 00:42:45 · 216 阅读 · 0 评论 -
机器学习基础(一):支持向量机原理
概览一、前言二、SVM概念1.概念2.函数间隔与几何间隔总结一、前言支持向量机(Support Vectore Machine, SVM)学习问题可以表示为凸优化问题,能够在小样本训练量的情况下,使用有效地算法求解线性及非线性问题的全局最优解。支持向量机在求解非线性分类问题时,利用核技巧将非线性问题从低纬空间向高纬空间映射,然后采取线性分类问题的方式去解决。在非线性问题上的优异表现及较高的鲁棒...原创 2020-02-06 22:38:37 · 1657 阅读 · 0 评论